亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ReSC-net: Hyperspectral Image Classification Based on Attention-Enhanced Residual Module and Spatial-Channel Attention

高光谱成像 过度拟合 残余物 计算机科学 上下文图像分类 人工智能 像素 频道(广播) 图像(数学) 模式识别(心理学) 样品(材料) 人工神经网络 算法 计算机网络 色谱法 化学
作者
Chuan Fu,Bo Du,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:36
标识
DOI:10.1109/tgrs.2024.3402364
摘要

Hyperspectral Image (HSI) classification is a key technique in remote sensing. Despite the increasing availability of high-quality HSI data, obtaining a large number of labeled samples remains challenging in certain cases. Consequently, HSI classification often faces the issue of insufficiently labeled samples. To address this challenge, sample augmentation techniques can be used to generate additional training samples. However, because of the significant differences between hyperspectral images and ordinary natural images, some augmentation techniques are not suitable for hyperspectral classification scenarios. In this paper, considering phenomena such as spectral aliasing in hyperspectral image classification and imaging processes, we propose a novel online augmentation technique for hyperspectral samples. During training, we apply random gains to the center pixel of labeled samples to increase the number of usable samples. Additionally, since augmented samples may still be insufficient, using overly complex networks can lead to overfitting. Therefore, we introduce a hyperspectral image classification network called Attention-enhancing Residual and Spatial-Channel Attention-based network (ReSC-net). In ReSC-net, we observe that the spatial dimension of hyperspectral blocks is much smaller than the channel dimension, and the limited sample size can lead to overfitting when using complex networks. Thus, we propose a channel attention-enhanced residual module to extract low-level features. Furthermore, ReSC-net introduces new spatial-channel attention to further optimize the extracted deep features for better classification. We conduct experiments on four commonly used HSI datasets. The experimental results demonstrate that our algorithm achieves favorable results on multiple HSI classification evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mrhughas发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
9秒前
21秒前
Koala04发布了新的文献求助10
27秒前
共享精神应助抹茶采纳,获得10
28秒前
mrhughas完成签到,获得积分10
40秒前
田様应助张尧摇摇摇采纳,获得10
1分钟前
1分钟前
1分钟前
Koala04完成签到,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
闪明火龙果完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
今后应助rebeycca采纳,获得10
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
AliEmbark完成签到,获得积分10
5分钟前
Hello应助科研通管家采纳,获得10
5分钟前
VDC应助科研通管家采纳,获得30
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780479
求助须知:如何正确求助?哪些是违规求助? 5656040
关于积分的说明 15453184
捐赠科研通 4911071
什么是DOI,文献DOI怎么找? 2643267
邀请新用户注册赠送积分活动 1590941
关于科研通互助平台的介绍 1545457