亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Corporate governance and innovation: a predictive modeling approach using machine learning

公司治理 业务 过程管理 计算机科学 管理 经济 财务
作者
Leonardo Henrique Lima de Pilla,Elaine Barbosa Couto Silveira,Fábio Caldieraro,Alketa Peci,Ishani Aggarwal
出处
期刊:R & D Management [Wiley]
标识
DOI:10.1111/radm.12703
摘要

The examination of the associations between internal corporate governance (CG) mechanisms and innovation faces challenges due to nonlinear patterns and complex interactions. Consequently, existing literature rarely reaches a consensus on the directions or strengths of these relationships. Furthermore, to investigate the CG–innovation association, prior research has predominantly relied on explanatory modeling, which involves applying statistical models to data to test correlational or causal hypotheses about theoretical constructs. These are the reasons why it remains unclear whether internal CG mechanisms, when considered collectively as an extensive array of interconnected variables, offer valuable insights for accurately predicting innovation. To address this gap, we analyze a dataset of research and development (R&D) projects from the Brazilian electricity sector by employing predictive modeling, which entails using statistical models or data mining algorithms to predict new observations, particularly using supervised machine learning (ML) methods. Our study demonstrates that a comprehensive set of variables representing internal CG mechanisms significantly enhances the predictive capabilities of ML algorithms for innovation. Furthermore, we illustrate how ML can illuminate nonlinear and non‐monotonic patterns, and interactions among variables, in the CG–innovation relationship. Our contribution to the literature encompasses three key aspects: introducing a predictive modeling approach to the discourse on the role of CG in innovation attainment through R&D endeavors, which can complement and enrich existing explanatory research; investigating non‐linear and non‐monotonic relationships, as well as interactions, in innovation prediction; and affirming the emerging body of literature that recognizes supervised ML as a valuable tool accessible to management researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈客发布了新的文献求助10
1秒前
6秒前
Lucas应助哈哈客采纳,获得10
14秒前
哈哈客完成签到,获得积分20
22秒前
28秒前
阳光的樱发布了新的文献求助10
34秒前
37秒前
Gabriel发布了新的文献求助30
43秒前
leo0531完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
李爱国应助Gabriel采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
小孟不忧郁完成签到,获得积分20
2分钟前
2分钟前
2分钟前
孙燕应助科研通管家采纳,获得30
3分钟前
草木完成签到 ,获得积分10
3分钟前
yi完成签到 ,获得积分10
3分钟前
4分钟前
123发布了新的文献求助10
4分钟前
顾矜应助123采纳,获得10
4分钟前
5分钟前
最落幕完成签到 ,获得积分10
5分钟前
5分钟前
Gabriel发布了新的文献求助10
5分钟前
斯文败类应助科研通管家采纳,获得10
5分钟前
千早爱音应助科研通管家采纳,获得10
5分钟前
华仔应助科研通管家采纳,获得10
5分钟前
5分钟前
青柠味薯片完成签到,获得积分10
5分钟前
Thanks完成签到 ,获得积分10
5分钟前
YAN完成签到 ,获得积分20
6分钟前
我是老大应助Gabriel采纳,获得10
6分钟前
6分钟前
欧欧发布了新的文献求助30
6分钟前
华仔应助可爱丹彤采纳,获得10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302615
求助须知:如何正确求助?哪些是违规求助? 4449726
关于积分的说明 13848680
捐赠科研通 4336021
什么是DOI,文献DOI怎么找? 2380724
邀请新用户注册赠送积分活动 1375671
关于科研通互助平台的介绍 1341998