已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Corporate governance and innovation: a predictive modeling approach using machine learning

公司治理 业务 过程管理 计算机科学 管理 经济 财务
作者
Leonardo Henrique Lima de Pilla,Elaine Barbosa Couto Silveira,Fábio Caldieraro,Alketa Peci,Ishani Aggarwal
出处
期刊:R & D Management [Wiley]
标识
DOI:10.1111/radm.12703
摘要

The examination of the associations between internal corporate governance (CG) mechanisms and innovation faces challenges due to nonlinear patterns and complex interactions. Consequently, existing literature rarely reaches a consensus on the directions or strengths of these relationships. Furthermore, to investigate the CG–innovation association, prior research has predominantly relied on explanatory modeling, which involves applying statistical models to data to test correlational or causal hypotheses about theoretical constructs. These are the reasons why it remains unclear whether internal CG mechanisms, when considered collectively as an extensive array of interconnected variables, offer valuable insights for accurately predicting innovation. To address this gap, we analyze a dataset of research and development (R&D) projects from the Brazilian electricity sector by employing predictive modeling, which entails using statistical models or data mining algorithms to predict new observations, particularly using supervised machine learning (ML) methods. Our study demonstrates that a comprehensive set of variables representing internal CG mechanisms significantly enhances the predictive capabilities of ML algorithms for innovation. Furthermore, we illustrate how ML can illuminate nonlinear and non‐monotonic patterns, and interactions among variables, in the CG–innovation relationship. Our contribution to the literature encompasses three key aspects: introducing a predictive modeling approach to the discourse on the role of CG in innovation attainment through R&D endeavors, which can complement and enrich existing explanatory research; investigating non‐linear and non‐monotonic relationships, as well as interactions, in innovation prediction; and affirming the emerging body of literature that recognizes supervised ML as a valuable tool accessible to management researchers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
669完成签到,获得积分10
刚刚
棉袄完成签到 ,获得积分10
2秒前
oceanao应助guanyu108采纳,获得10
2秒前
4秒前
7秒前
嗯哼应助好运来采纳,获得10
8秒前
无机盐完成签到,获得积分10
8秒前
8秒前
Aaa_12012完成签到,获得积分0
8秒前
gmchen完成签到,获得积分10
8秒前
9秒前
11秒前
苏小喵完成签到 ,获得积分10
11秒前
晴云发布了新的文献求助10
11秒前
13秒前
14秒前
14秒前
科研通AI2S应助YY采纳,获得10
15秒前
Feifei133发布了新的文献求助10
16秒前
嗯哼应助12采纳,获得30
17秒前
海潮发布了新的文献求助10
17秒前
LL发布了新的文献求助10
17秒前
Xu完成签到 ,获得积分10
18秒前
科研达人发布了新的文献求助10
19秒前
21秒前
所所应助wangjw采纳,获得10
21秒前
21秒前
23秒前
学好英语发布了新的文献求助10
23秒前
Hello应助千迁jiu采纳,获得10
23秒前
落寞臻发布了新的文献求助10
25秒前
tengzijing完成签到,获得积分10
30秒前
weilanhaian发布了新的文献求助10
32秒前
哼小盏发布了新的文献求助10
33秒前
居居应助科研通管家采纳,获得10
33秒前
深情安青应助科研通管家采纳,获得10
33秒前
研友_VZG7GZ应助科研通管家采纳,获得10
33秒前
san发布了新的文献求助200
34秒前
35秒前
XX完成签到 ,获得积分10
36秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158476
求助须知:如何正确求助?哪些是违规求助? 2809636
关于积分的说明 7883011
捐赠科研通 2468293
什么是DOI,文献DOI怎么找? 1314048
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601956