GC2: Generalizable Continual Classification of Medical Images

人工智能 子网 计算机科学 机器学习 深度学习 推论 计算机安全
作者
Nourhan Bayasi,Ghassan Hamarneh,Rafeef Garbi
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (11): 3767-3779
标识
DOI:10.1109/tmi.2024.3398533
摘要

Deep learning models have achieved remarkable success in medical image classification. These models are typically trained once on the available annotated images and thus lack the ability of continually learning new tasks (i.e., new classes or data distributions) due to the problem of catastrophic forgetting. Recently, there has been more interest in designing continual learning methods to learn different tasks presented sequentially over time while preserving previously acquired knowledge. However, these methods focus mainly on preventing catastrophic forgetting and are tested under a closed-world assumption; i.e., assuming the test data is drawn from the same distribution as the training data. In this work, we advance the state-of-the-art in continual learning by proposing GC 2 for medical image classification, which learns a sequence of tasks while simultaneously enhancing its out-of-distribution robustness. To alleviate forgetting, GC 2 employs a gradual culpability-based network pruning to identify an optimal subnetwork for each task. To improve generalization, GC 2 incorporates adversarial image augmentation and knowledge distillation approaches for learning generalized and robust representations for each subnetwork. Our extensive experiments on multiple benchmarks in a task-agnostic inference demonstrate that GC 2 significantly outperforms baselines and other continual learning methods in reducing forgetting and enhancing generalization. Our code is publicly available at the following link: https://github.com/ nourhanb/TMI2024-GC2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助小羊采纳,获得10
刚刚
嘻嘻完成签到,获得积分10
1秒前
4秒前
龙超人发布了新的文献求助10
4秒前
马超放烟花完成签到 ,获得积分10
6秒前
SciGPT应助BLCER采纳,获得10
6秒前
不去明知山完成签到 ,获得积分10
7秒前
L112233发布了新的文献求助10
9秒前
Stokis发布了新的文献求助30
9秒前
Hesm完成签到,获得积分20
10秒前
10秒前
旗木完成签到,获得积分10
10秒前
12秒前
科研通AI2S应助默默千风采纳,获得10
13秒前
Heavenfalling完成签到,获得积分10
14秒前
小平发布了新的文献求助10
14秒前
万能图书馆应助阮煜城采纳,获得10
15秒前
呼呼呼完成签到,获得积分10
16秒前
17秒前
田様应助芦同学采纳,获得10
17秒前
BLCER发布了新的文献求助10
17秒前
Owen应助易安采纳,获得30
18秒前
19秒前
笙声完成签到 ,获得积分10
20秒前
柠檬汽水发布了新的文献求助10
21秒前
easterway完成签到,获得积分10
22秒前
22秒前
23秒前
领导范儿应助笙声采纳,获得10
25秒前
BLCER完成签到,获得积分10
27秒前
LIYI发布了新的文献求助10
28秒前
淡定小蜜蜂完成签到,获得积分10
30秒前
WILDTROYE关注了科研通微信公众号
30秒前
干净依风完成签到,获得积分10
31秒前
32秒前
33秒前
34秒前
LIYI完成签到,获得积分10
34秒前
深情安青应助L112233采纳,获得10
35秒前
易安发布了新的文献求助30
37秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309767
求助须知:如何正确求助?哪些是违规求助? 2943014
关于积分的说明 8512004
捐赠科研通 2618059
什么是DOI,文献DOI怎么找? 1430795
科研通“疑难数据库(出版商)”最低求助积分说明 664310
邀请新用户注册赠送积分活动 649468