Bilateral Multi-Behavior Modeling for Reciprocal Recommendation in Online Recruitment

计算机科学 互惠的 推荐系统 数据建模 万维网 数据库 语言学 哲学
作者
Zhi Zheng,Xiao Hu,Zhaopeng Qiu,Yuan Cheng,Shanshan Gao,Yang Song,Hengshu Zhu,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (11): 5681-5694 被引量:4
标识
DOI:10.1109/tkde.2024.3397705
摘要

Recent years have witnessed the rapid development of online recruitment platforms, which provide a convenient way for matching job seekers and recruiters by leveraging recommendation systems. Indeed, this is a reciprocal recommendation problem which needs to consider the preferences of both job seekers and recruiters simultaneously, making it different from traditional uni-directional user-item recommendation problems. Existing studies mainly focus on building recommendation models based on the matched person-job pairs via text matching or collaborative filtering methods. However, we propose that these methods are limited and insufficient for user modeling in recruitment platforms, since the abundant multi-typed bilateral behaviors (e.g., apply for conversation and neglect the candidates ) among users have been largely ignored. Therefore, in this paper, we propose a novel BilAteral Multi-BehaviOr mOdeling (BAMBOO) method for reciprocal recommendation in online recruitment, which can model the multi-typed interactions between job seekers and recruiters from two different perspectives, respectively expectation perspective and competitiveness perspective . Specifically, for the expectation perspective, we propose to format the historical behaviors of different users as bilateral multi-behavior sequences, and we utilize a transformer-based model to learn the representations of what the users want to obtain. For the competitiveness perspective, we propose to construct a bilateral interaction heterogeneous graph to describe the entire recruitment market, and further utilize a heterogeneous graph transformer-based model to learn the representations of what the users can obtain. Moreover, we utilize contrastive learning methods to enhance these two modules. Furthermore, we propose to decompose the matching probability between job seekers and recruiters into the product of two parts, respectively the probability of the active party initiating the conversation and the probability of the passive party accepting it, and we train our model based on a multi-task learning strategy. Finally, we conduct both offline experiments on real-world datasets and online A/B test, and the experiment results validate the effectiveness of our BAMBOO model compared with several state-of-the-art baseline methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小瓶子完成签到,获得积分10
刚刚
刚刚
科研通AI6应助学习小王子采纳,获得10
1秒前
我是老大应助学习小王子采纳,获得10
1秒前
Jessie完成签到,获得积分10
1秒前
111发布了新的文献求助10
2秒前
烟花应助MetaMysteria采纳,获得10
3秒前
3秒前
4秒前
June发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
8秒前
合法合规发布了新的文献求助10
9秒前
AH完成签到,获得积分10
10秒前
婷牛牛儿发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
12秒前
所所应助Auv采纳,获得10
12秒前
14秒前
Akim应助失眠的寄云采纳,获得10
14秒前
CipherSage应助美满的大象采纳,获得10
14秒前
14秒前
15秒前
甜美枫叶发布了新的文献求助10
16秒前
辛勤的乌完成签到,获得积分10
18秒前
18秒前
echo发布了新的文献求助10
19秒前
gqfang完成签到,获得积分10
19秒前
21秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
美满泥猴桃完成签到,获得积分10
23秒前
拉长的秋白完成签到 ,获得积分10
23秒前
24秒前
量子星尘发布了新的文献求助10
24秒前
知性的寻芹应助赎罪采纳,获得50
26秒前
SDASDS发布了新的文献求助30
26秒前
小摩尔完成签到 ,获得积分10
26秒前
knight7m完成签到 ,获得积分10
26秒前
26秒前
27秒前
Lucas应助YYYYYY采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660142
求助须知:如何正确求助?哪些是违规求助? 4831530
关于积分的说明 15089282
捐赠科研通 4818721
什么是DOI,文献DOI怎么找? 2578762
邀请新用户注册赠送积分活动 1533370
关于科研通互助平台的介绍 1492124