已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Bilateral Multi-Behavior Modeling for Reciprocal Recommendation in Online Recruitment

计算机科学 互惠的 推荐系统 数据建模 万维网 数据库 哲学 语言学
作者
Zhi Zheng,Xiao Hu,Zhaopeng Qiu,Yuan Cheng,Shanshan Gao,Yang Song,Hengshu Zhu,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (11): 5681-5694 被引量:4
标识
DOI:10.1109/tkde.2024.3397705
摘要

Recent years have witnessed the rapid development of online recruitment platforms, which provide a convenient way for matching job seekers and recruiters by leveraging recommendation systems. Indeed, this is a reciprocal recommendation problem which needs to consider the preferences of both job seekers and recruiters simultaneously, making it different from traditional uni-directional user-item recommendation problems. Existing studies mainly focus on building recommendation models based on the matched person-job pairs via text matching or collaborative filtering methods. However, we propose that these methods are limited and insufficient for user modeling in recruitment platforms, since the abundant multi-typed bilateral behaviors (e.g., apply for conversation and neglect the candidates ) among users have been largely ignored. Therefore, in this paper, we propose a novel BilAteral Multi-BehaviOr mOdeling (BAMBOO) method for reciprocal recommendation in online recruitment, which can model the multi-typed interactions between job seekers and recruiters from two different perspectives, respectively expectation perspective and competitiveness perspective . Specifically, for the expectation perspective, we propose to format the historical behaviors of different users as bilateral multi-behavior sequences, and we utilize a transformer-based model to learn the representations of what the users want to obtain. For the competitiveness perspective, we propose to construct a bilateral interaction heterogeneous graph to describe the entire recruitment market, and further utilize a heterogeneous graph transformer-based model to learn the representations of what the users can obtain. Moreover, we utilize contrastive learning methods to enhance these two modules. Furthermore, we propose to decompose the matching probability between job seekers and recruiters into the product of two parts, respectively the probability of the active party initiating the conversation and the probability of the passive party accepting it, and we train our model based on a multi-task learning strategy. Finally, we conduct both offline experiments on real-world datasets and online A/B test, and the experiment results validate the effectiveness of our BAMBOO model compared with several state-of-the-art baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱睡觉发布了新的文献求助10
1秒前
谷歌狗完成签到,获得积分20
4秒前
笑点低忆之完成签到 ,获得积分10
4秒前
xingsixs完成签到 ,获得积分10
6秒前
滴嘟滴嘟完成签到 ,获得积分10
7秒前
有趣的银完成签到,获得积分10
8秒前
谷歌狗发布了新的文献求助10
10秒前
10秒前
11秒前
易水完成签到,获得积分20
11秒前
11秒前
13秒前
内向的恶犬完成签到 ,获得积分10
15秒前
Lucas应助哎咦随风起采纳,获得10
16秒前
18746005898完成签到 ,获得积分10
16秒前
宇123发布了新的文献求助10
17秒前
文明8完成签到,获得积分10
20秒前
哈哈完成签到 ,获得积分10
20秒前
万能图书馆应助nadia采纳,获得150
23秒前
姆姆没买完成签到 ,获得积分0
23秒前
24秒前
Mic应助易水采纳,获得10
24秒前
和风完成签到 ,获得积分10
25秒前
能干的荆完成签到 ,获得积分10
26秒前
李雨芹发布了新的文献求助30
30秒前
唐磊完成签到,获得积分10
31秒前
科研通AI6应助coffee333采纳,获得10
31秒前
等你下课完成签到 ,获得积分10
32秒前
xiaozhou完成签到,获得积分20
34秒前
隐形曼青应助甜甜的采纳,获得10
44秒前
赘婿应助Frank采纳,获得10
44秒前
科研通AI6应助李雨芹采纳,获得10
46秒前
49秒前
迷路的台灯完成签到 ,获得积分10
51秒前
51秒前
misa完成签到 ,获得积分10
52秒前
科研通AI6应助tctc采纳,获得10
53秒前
53秒前
lige完成签到 ,获得积分10
53秒前
天外来物完成签到 ,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Athena操作手册 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5042126
求助须知:如何正确求助?哪些是违规求助? 4272714
关于积分的说明 13321555
捐赠科研通 4085380
什么是DOI,文献DOI怎么找? 2235157
邀请新用户注册赠送积分活动 1242727
关于科研通互助平台的介绍 1169563