已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Bilateral Multi-Behavior Modeling for Reciprocal Recommendation in Online Recruitment

计算机科学 互惠的 推荐系统 数据建模 万维网 数据库 语言学 哲学
作者
Zhi Zheng,Xiao Hu,Zhaopeng Qiu,Yuan Cheng,Shanshan Gao,Yang Song,Hengshu Zhu,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (11): 5681-5694 被引量:4
标识
DOI:10.1109/tkde.2024.3397705
摘要

Recent years have witnessed the rapid development of online recruitment platforms, which provide a convenient way for matching job seekers and recruiters by leveraging recommendation systems. Indeed, this is a reciprocal recommendation problem which needs to consider the preferences of both job seekers and recruiters simultaneously, making it different from traditional uni-directional user-item recommendation problems. Existing studies mainly focus on building recommendation models based on the matched person-job pairs via text matching or collaborative filtering methods. However, we propose that these methods are limited and insufficient for user modeling in recruitment platforms, since the abundant multi-typed bilateral behaviors (e.g., apply for conversation and neglect the candidates ) among users have been largely ignored. Therefore, in this paper, we propose a novel BilAteral Multi-BehaviOr mOdeling (BAMBOO) method for reciprocal recommendation in online recruitment, which can model the multi-typed interactions between job seekers and recruiters from two different perspectives, respectively expectation perspective and competitiveness perspective . Specifically, for the expectation perspective, we propose to format the historical behaviors of different users as bilateral multi-behavior sequences, and we utilize a transformer-based model to learn the representations of what the users want to obtain. For the competitiveness perspective, we propose to construct a bilateral interaction heterogeneous graph to describe the entire recruitment market, and further utilize a heterogeneous graph transformer-based model to learn the representations of what the users can obtain. Moreover, we utilize contrastive learning methods to enhance these two modules. Furthermore, we propose to decompose the matching probability between job seekers and recruiters into the product of two parts, respectively the probability of the active party initiating the conversation and the probability of the passive party accepting it, and we train our model based on a multi-task learning strategy. Finally, we conduct both offline experiments on real-world datasets and online A/B test, and the experiment results validate the effectiveness of our BAMBOO model compared with several state-of-the-art baseline methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七七完成签到 ,获得积分10
刚刚
万能图书馆应助Su采纳,获得10
12秒前
百宝驳回了Jasper应助
14秒前
eriphin完成签到,获得积分10
14秒前
打打应助渴望者采纳,获得10
17秒前
畅快的发箍完成签到,获得积分10
17秒前
姜姗完成签到 ,获得积分10
19秒前
lzy完成签到,获得积分10
21秒前
21秒前
22秒前
在巨人的肩膀上眺望远方完成签到,获得积分10
29秒前
amanda完成签到,获得积分10
31秒前
芒果完成签到 ,获得积分10
34秒前
34秒前
36秒前
36秒前
yyds应助科研通管家采纳,获得160
39秒前
顾矜应助科研通管家采纳,获得10
39秒前
爆米花应助科研通管家采纳,获得10
40秒前
反恐分子应助科研通管家采纳,获得10
40秒前
情怀应助科研通管家采纳,获得10
40秒前
40秒前
呼延水云发布了新的文献求助10
41秒前
43秒前
Broadway Zhang完成签到,获得积分10
43秒前
兼听则明应助cai采纳,获得50
44秒前
乐空思应助淡定秀发采纳,获得20
46秒前
情怀应助不爱胡萝卜采纳,获得10
48秒前
爱吃橙子完成签到 ,获得积分10
50秒前
111完成签到 ,获得积分10
51秒前
51秒前
大学生完成签到 ,获得积分10
52秒前
酷波er应助SCIDING采纳,获得10
55秒前
57秒前
百宝发布了新的文献求助10
58秒前
淡定秀发完成签到,获得积分10
59秒前
wanci应助amanda采纳,获得30
1分钟前
1分钟前
美丽的若云完成签到 ,获得积分10
1分钟前
土豆你个西红柿完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606500
求助须知:如何正确求助?哪些是违规求助? 4690888
关于积分的说明 14866511
捐赠科研通 4706081
什么是DOI,文献DOI怎么找? 2542717
邀请新用户注册赠送积分活动 1508129
关于科研通互助平台的介绍 1472276