Bilateral Multi-Behavior Modeling for Reciprocal Recommendation in Online Recruitment

计算机科学 互惠的 推荐系统 数据建模 万维网 数据库 语言学 哲学
作者
Zhi Zheng,Xiao Hu,Zhaopeng Qiu,Yuan Cheng,Shanshan Gao,Yang Song,Hengshu Zhu,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (11): 5681-5694 被引量:4
标识
DOI:10.1109/tkde.2024.3397705
摘要

Recent years have witnessed the rapid development of online recruitment platforms, which provide a convenient way for matching job seekers and recruiters by leveraging recommendation systems. Indeed, this is a reciprocal recommendation problem which needs to consider the preferences of both job seekers and recruiters simultaneously, making it different from traditional uni-directional user-item recommendation problems. Existing studies mainly focus on building recommendation models based on the matched person-job pairs via text matching or collaborative filtering methods. However, we propose that these methods are limited and insufficient for user modeling in recruitment platforms, since the abundant multi-typed bilateral behaviors (e.g., apply for conversation and neglect the candidates ) among users have been largely ignored. Therefore, in this paper, we propose a novel BilAteral Multi-BehaviOr mOdeling (BAMBOO) method for reciprocal recommendation in online recruitment, which can model the multi-typed interactions between job seekers and recruiters from two different perspectives, respectively expectation perspective and competitiveness perspective . Specifically, for the expectation perspective, we propose to format the historical behaviors of different users as bilateral multi-behavior sequences, and we utilize a transformer-based model to learn the representations of what the users want to obtain. For the competitiveness perspective, we propose to construct a bilateral interaction heterogeneous graph to describe the entire recruitment market, and further utilize a heterogeneous graph transformer-based model to learn the representations of what the users can obtain. Moreover, we utilize contrastive learning methods to enhance these two modules. Furthermore, we propose to decompose the matching probability between job seekers and recruiters into the product of two parts, respectively the probability of the active party initiating the conversation and the probability of the passive party accepting it, and we train our model based on a multi-task learning strategy. Finally, we conduct both offline experiments on real-world datasets and online A/B test, and the experiment results validate the effectiveness of our BAMBOO model compared with several state-of-the-art baseline methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fgjsw123完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助100
2秒前
共享精神应助wy采纳,获得10
2秒前
2秒前
2秒前
lyh发布了新的文献求助10
2秒前
3秒前
喜喜完成签到 ,获得积分10
3秒前
3秒前
4秒前
zpp发布了新的文献求助10
4秒前
lkk发布了新的文献求助10
5秒前
科研通AI6应助跳跃雨泽采纳,获得10
5秒前
6秒前
酷炫甜瓜发布了新的文献求助10
6秒前
77发布了新的文献求助10
6秒前
大卫戴发布了新的文献求助10
6秒前
大白发布了新的文献求助10
6秒前
6秒前
彩色碧菡完成签到,获得积分10
6秒前
李健的小迷弟应助jing采纳,获得30
6秒前
DDDD发布了新的文献求助10
6秒前
fdn完成签到,获得积分10
7秒前
小白完成签到 ,获得积分20
7秒前
留云完成签到,获得积分10
7秒前
sia完成签到,获得积分10
8秒前
Stella应助Jane采纳,获得10
8秒前
ZYY完成签到,获得积分10
9秒前
9秒前
搜集达人应助Caroline采纳,获得10
9秒前
9秒前
LY发布了新的文献求助60
10秒前
积极鸵鸟完成签到,获得积分10
10秒前
10秒前
希望天下0贩的0应助doris采纳,获得10
11秒前
ding应助机智的明雪采纳,获得10
11秒前
凡仔完成签到,获得积分10
12秒前
Eho发布了新的文献求助10
12秒前
英姑应助安眠采纳,获得10
13秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587472
求助须知:如何正确求助?哪些是违规求助? 4670562
关于积分的说明 14783436
捐赠科研通 4622867
什么是DOI,文献DOI怎么找? 2531286
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468080