Bilateral Multi-Behavior Modeling for Reciprocal Recommendation in Online Recruitment

计算机科学 互惠的 推荐系统 数据建模 万维网 数据库 语言学 哲学
作者
Zhi Zheng,Xiao Hu,Zhaopeng Qiu,Yuan Cheng,Shanshan Gao,Yang Song,Hengshu Zhu,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (11): 5681-5694 被引量:4
标识
DOI:10.1109/tkde.2024.3397705
摘要

Recent years have witnessed the rapid development of online recruitment platforms, which provide a convenient way for matching job seekers and recruiters by leveraging recommendation systems. Indeed, this is a reciprocal recommendation problem which needs to consider the preferences of both job seekers and recruiters simultaneously, making it different from traditional uni-directional user-item recommendation problems. Existing studies mainly focus on building recommendation models based on the matched person-job pairs via text matching or collaborative filtering methods. However, we propose that these methods are limited and insufficient for user modeling in recruitment platforms, since the abundant multi-typed bilateral behaviors (e.g., apply for conversation and neglect the candidates ) among users have been largely ignored. Therefore, in this paper, we propose a novel BilAteral Multi-BehaviOr mOdeling (BAMBOO) method for reciprocal recommendation in online recruitment, which can model the multi-typed interactions between job seekers and recruiters from two different perspectives, respectively expectation perspective and competitiveness perspective . Specifically, for the expectation perspective, we propose to format the historical behaviors of different users as bilateral multi-behavior sequences, and we utilize a transformer-based model to learn the representations of what the users want to obtain. For the competitiveness perspective, we propose to construct a bilateral interaction heterogeneous graph to describe the entire recruitment market, and further utilize a heterogeneous graph transformer-based model to learn the representations of what the users can obtain. Moreover, we utilize contrastive learning methods to enhance these two modules. Furthermore, we propose to decompose the matching probability between job seekers and recruiters into the product of two parts, respectively the probability of the active party initiating the conversation and the probability of the passive party accepting it, and we train our model based on a multi-task learning strategy. Finally, we conduct both offline experiments on real-world datasets and online A/B test, and the experiment results validate the effectiveness of our BAMBOO model compared with several state-of-the-art baseline methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
复杂的海发布了新的文献求助10
2秒前
打打应助草木采纳,获得10
2秒前
2秒前
3秒前
胡慧婷完成签到 ,获得积分10
4秒前
如常完成签到,获得积分10
5秒前
偏偏海完成签到,获得积分10
5秒前
yuki完成签到 ,获得积分10
5秒前
5秒前
踏实幻竹发布了新的文献求助10
6秒前
海德堡完成签到,获得积分10
6秒前
6秒前
lqy完成签到,获得积分10
6秒前
6秒前
shuoye发布了新的文献求助30
6秒前
6秒前
田様应助gsit采纳,获得10
6秒前
7秒前
希望天下0贩的0应助水123采纳,获得10
8秒前
9秒前
9秒前
leey发布了新的文献求助10
10秒前
lqy发布了新的文献求助10
11秒前
wang发布了新的文献求助10
11秒前
洪豆豆完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
SciGPT应助aaa采纳,获得30
15秒前
豆子发布了新的文献求助10
16秒前
Bonaventure完成签到,获得积分10
17秒前
leey完成签到,获得积分10
17秒前
调皮帆布鞋完成签到,获得积分10
19秒前
你都至少信我八分吧完成签到 ,获得积分10
20秒前
Luffa完成签到,获得积分10
22秒前
23秒前
23秒前
rsimap360完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
一丁点可爱完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603799
求助须知:如何正确求助?哪些是违规求助? 4688754
关于积分的说明 14855835
捐赠科研通 4695101
什么是DOI,文献DOI怎么找? 2540987
邀请新用户注册赠送积分活动 1507143
关于科研通互助平台的介绍 1471814