Bilateral Multi-Behavior Modeling for Reciprocal Recommendation in Online Recruitment

计算机科学 互惠的 推荐系统 数据建模 万维网 数据库 哲学 语言学
作者
Zhi Zheng,Xiao Hu,Zhaopeng Qiu,Yuan Cheng,Shanshan Gao,Yang Song,Hengshu Zhu,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (11): 5681-5694 被引量:4
标识
DOI:10.1109/tkde.2024.3397705
摘要

Recent years have witnessed the rapid development of online recruitment platforms, which provide a convenient way for matching job seekers and recruiters by leveraging recommendation systems. Indeed, this is a reciprocal recommendation problem which needs to consider the preferences of both job seekers and recruiters simultaneously, making it different from traditional uni-directional user-item recommendation problems. Existing studies mainly focus on building recommendation models based on the matched person-job pairs via text matching or collaborative filtering methods. However, we propose that these methods are limited and insufficient for user modeling in recruitment platforms, since the abundant multi-typed bilateral behaviors (e.g., apply for conversation and neglect the candidates ) among users have been largely ignored. Therefore, in this paper, we propose a novel BilAteral Multi-BehaviOr mOdeling (BAMBOO) method for reciprocal recommendation in online recruitment, which can model the multi-typed interactions between job seekers and recruiters from two different perspectives, respectively expectation perspective and competitiveness perspective . Specifically, for the expectation perspective, we propose to format the historical behaviors of different users as bilateral multi-behavior sequences, and we utilize a transformer-based model to learn the representations of what the users want to obtain. For the competitiveness perspective, we propose to construct a bilateral interaction heterogeneous graph to describe the entire recruitment market, and further utilize a heterogeneous graph transformer-based model to learn the representations of what the users can obtain. Moreover, we utilize contrastive learning methods to enhance these two modules. Furthermore, we propose to decompose the matching probability between job seekers and recruiters into the product of two parts, respectively the probability of the active party initiating the conversation and the probability of the passive party accepting it, and we train our model based on a multi-task learning strategy. Finally, we conduct both offline experiments on real-world datasets and online A/B test, and the experiment results validate the effectiveness of our BAMBOO model compared with several state-of-the-art baseline methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静胜发布了新的文献求助10
刚刚
刚刚
正直的文涛完成签到,获得积分10
刚刚
蜡笔小猪发布了新的文献求助10
2秒前
2秒前
987发布了新的文献求助10
3秒前
我是老大应助longer采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
科目三应助cruise采纳,获得10
5秒前
顾矜应助张张赶紧看文献采纳,获得10
5秒前
8秒前
SciGPT应助勒恩梁采纳,获得10
8秒前
8秒前
传奇3应助123采纳,获得10
9秒前
9秒前
xxx发布了新的文献求助20
9秒前
www完成签到 ,获得积分10
10秒前
123完成签到 ,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
13秒前
15秒前
wanci应助绝望的文盲采纳,获得10
15秒前
张张赶紧看文献完成签到,获得积分10
15秒前
15秒前
Hello应助不知名又又采纳,获得10
17秒前
17秒前
探花小狼发布了新的文献求助10
18秒前
18秒前
大模型应助YYY采纳,获得10
18秒前
19秒前
20秒前
乐乐应助xiangling1116采纳,获得20
20秒前
20秒前
Gao发布了新的文献求助10
20秒前
21秒前
勒恩梁发布了新的文献求助10
21秒前
达不刘发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720875
求助须知:如何正确求助?哪些是违规求助? 5262673
关于积分的说明 15292448
捐赠科研通 4870116
什么是DOI,文献DOI怎么找? 2615251
邀请新用户注册赠送积分活动 1565182
关于科研通互助平台的介绍 1522256