Bilateral Multi-Behavior Modeling for Reciprocal Recommendation in Online Recruitment

计算机科学 互惠的 推荐系统 数据建模 万维网 数据库 语言学 哲学
作者
Zhi Zheng,Xiao Hu,Zhaopeng Qiu,Yuan Cheng,Shanshan Gao,Yang Song,Hengshu Zhu,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (11): 5681-5694 被引量:4
标识
DOI:10.1109/tkde.2024.3397705
摘要

Recent years have witnessed the rapid development of online recruitment platforms, which provide a convenient way for matching job seekers and recruiters by leveraging recommendation systems. Indeed, this is a reciprocal recommendation problem which needs to consider the preferences of both job seekers and recruiters simultaneously, making it different from traditional uni-directional user-item recommendation problems. Existing studies mainly focus on building recommendation models based on the matched person-job pairs via text matching or collaborative filtering methods. However, we propose that these methods are limited and insufficient for user modeling in recruitment platforms, since the abundant multi-typed bilateral behaviors (e.g., apply for conversation and neglect the candidates ) among users have been largely ignored. Therefore, in this paper, we propose a novel BilAteral Multi-BehaviOr mOdeling (BAMBOO) method for reciprocal recommendation in online recruitment, which can model the multi-typed interactions between job seekers and recruiters from two different perspectives, respectively expectation perspective and competitiveness perspective . Specifically, for the expectation perspective, we propose to format the historical behaviors of different users as bilateral multi-behavior sequences, and we utilize a transformer-based model to learn the representations of what the users want to obtain. For the competitiveness perspective, we propose to construct a bilateral interaction heterogeneous graph to describe the entire recruitment market, and further utilize a heterogeneous graph transformer-based model to learn the representations of what the users can obtain. Moreover, we utilize contrastive learning methods to enhance these two modules. Furthermore, we propose to decompose the matching probability between job seekers and recruiters into the product of two parts, respectively the probability of the active party initiating the conversation and the probability of the passive party accepting it, and we train our model based on a multi-task learning strategy. Finally, we conduct both offline experiments on real-world datasets and online A/B test, and the experiment results validate the effectiveness of our BAMBOO model compared with several state-of-the-art baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
榆术山支子完成签到,获得积分10
1秒前
张达发布了新的文献求助10
1秒前
科研通AI2S应助我好樊采纳,获得30
1秒前
hgl完成签到,获得积分10
2秒前
2秒前
研友_89eRG8发布了新的文献求助10
2秒前
彭佳乐完成签到,获得积分10
3秒前
蠢萌的小哈完成签到 ,获得积分10
3秒前
盖饭饭完成签到,获得积分20
4秒前
独特鸽子发布了新的文献求助10
4秒前
科研通AI6应助Mure采纳,获得10
4秒前
Jmike完成签到,获得积分10
6秒前
orixero应助梓榆采纳,获得10
6秒前
hgl发布了新的文献求助10
6秒前
无语的凡梦完成签到,获得积分10
7秒前
8秒前
tuanheqi应助nini采纳,获得80
8秒前
小杭76应助云歇雨住采纳,获得10
9秒前
10秒前
田様应助Babe1934采纳,获得10
13秒前
fang发布了新的文献求助10
14秒前
jingcheng完成签到,获得积分10
16秒前
丘比特应助科研圈外人采纳,获得10
18秒前
NexusExplorer应助nini采纳,获得10
18秒前
在水一方应助fang采纳,获得10
18秒前
19秒前
浮游应助鱼七采纳,获得10
19秒前
20秒前
梁传众发布了新的文献求助10
20秒前
FSDF完成签到,获得积分20
23秒前
23秒前
Hilda007应助鱼七采纳,获得10
23秒前
23秒前
伏波完成签到,获得积分10
23秒前
24秒前
25秒前
26秒前
26秒前
27秒前
云山完成签到,获得积分10
27秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384621
求助须知:如何正确求助?哪些是违规求助? 4507409
关于积分的说明 14028029
捐赠科研通 4417130
什么是DOI,文献DOI怎么找? 2426268
邀请新用户注册赠送积分活动 1419058
关于科研通互助平台的介绍 1397395