Bilateral Multi-Behavior Modeling for Reciprocal Recommendation in Online Recruitment

计算机科学 互惠的 推荐系统 数据建模 万维网 数据库 哲学 语言学
作者
Zhi Zheng,Xiao Hu,Zhaopeng Qiu,Yuan Cheng,Shanshan Gao,Yang Song,Hengshu Zhu,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (11): 5681-5694 被引量:4
标识
DOI:10.1109/tkde.2024.3397705
摘要

Recent years have witnessed the rapid development of online recruitment platforms, which provide a convenient way for matching job seekers and recruiters by leveraging recommendation systems. Indeed, this is a reciprocal recommendation problem which needs to consider the preferences of both job seekers and recruiters simultaneously, making it different from traditional uni-directional user-item recommendation problems. Existing studies mainly focus on building recommendation models based on the matched person-job pairs via text matching or collaborative filtering methods. However, we propose that these methods are limited and insufficient for user modeling in recruitment platforms, since the abundant multi-typed bilateral behaviors (e.g., apply for conversation and neglect the candidates ) among users have been largely ignored. Therefore, in this paper, we propose a novel BilAteral Multi-BehaviOr mOdeling (BAMBOO) method for reciprocal recommendation in online recruitment, which can model the multi-typed interactions between job seekers and recruiters from two different perspectives, respectively expectation perspective and competitiveness perspective . Specifically, for the expectation perspective, we propose to format the historical behaviors of different users as bilateral multi-behavior sequences, and we utilize a transformer-based model to learn the representations of what the users want to obtain. For the competitiveness perspective, we propose to construct a bilateral interaction heterogeneous graph to describe the entire recruitment market, and further utilize a heterogeneous graph transformer-based model to learn the representations of what the users can obtain. Moreover, we utilize contrastive learning methods to enhance these two modules. Furthermore, we propose to decompose the matching probability between job seekers and recruiters into the product of two parts, respectively the probability of the active party initiating the conversation and the probability of the passive party accepting it, and we train our model based on a multi-task learning strategy. Finally, we conduct both offline experiments on real-world datasets and online A/B test, and the experiment results validate the effectiveness of our BAMBOO model compared with several state-of-the-art baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
那啥发布了新的文献求助100
刚刚
1秒前
DG完成签到,获得积分10
1秒前
沉静的黄豆完成签到,获得积分10
1秒前
飞扬完成签到,获得积分10
1秒前
1秒前
2秒前
旧人旧街发布了新的文献求助10
2秒前
ziyue发布了新的文献求助200
2秒前
hhhh完成签到,获得积分10
2秒前
小白一号应助米妮采纳,获得10
2秒前
中科路2020完成签到,获得积分10
3秒前
清脆的冷松完成签到 ,获得积分10
3秒前
dcq20535完成签到 ,获得积分10
3秒前
鹿鹿发布了新的文献求助10
4秒前
很重要发布了新的文献求助10
4秒前
4秒前
hobowei完成签到 ,获得积分10
5秒前
mini的yr完成签到 ,获得积分10
6秒前
6秒前
三木完成签到 ,获得积分10
6秒前
oneonlycrown发布了新的文献求助10
7秒前
打打应助小李博士采纳,获得10
7秒前
完美世界应助Ni采纳,获得10
7秒前
RONG完成签到,获得积分10
8秒前
8秒前
危机的雨梅完成签到,获得积分20
8秒前
Ganlou应助afterly采纳,获得10
9秒前
FIGGIEKIO完成签到,获得积分10
10秒前
10秒前
小北发布了新的文献求助10
11秒前
oneonlycrown完成签到,获得积分10
11秒前
斯文败类应助自觉夏瑶采纳,获得10
11秒前
11秒前
13秒前
13秒前
懵懂的依秋完成签到 ,获得积分10
13秒前
旧人旧街完成签到,获得积分10
14秒前
DVD发布了新的文献求助10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308038
求助须知:如何正确求助?哪些是违规求助? 2941584
关于积分的说明 8504244
捐赠科研通 2616093
什么是DOI,文献DOI怎么找? 1429449
科研通“疑难数据库(出版商)”最低求助积分说明 663767
邀请新用户注册赠送积分活动 648712