The dance of neurons: Exploring nonlinear dynamics in brain networks

舞蹈 动力学(音乐) 神经科学 非线性系统 认知科学 计算机科学 心理学 物理 艺术 视觉艺术 教育学 量子力学
作者
Maryam Saadati,Saba Sadat Khodaei,Yousef Jamali
出处
期刊:Communications in Nonlinear Science and Numerical Simulation [Elsevier]
卷期号:: 108133-108133
标识
DOI:10.1016/j.cnsns.2024.108133
摘要

The brain is a complex, nonlinear system, exhibiting ever-evolving patterns of activities, whether in the presence or absence of external stimuli or task demands. Nonlinearity can notably obscure the link between structural constraints enforced on the interaction and its dynamical consequences. Suitable nonlinear dynamical models and their analysis serve as essential tools not only for bridging structural and functional understanding of the brain but also for predictably altering the complex dynamical organization of the brain. Here, starting from a large-scale network of threshold Hodgkin–Huxley style neurons, we formulate the average nonlinear dynamics implicitly following from the Wilson–Cowan assumptions. We investigate the influence of biophysical and structural properties on the complexity of neural dynamics at the microscale level and its relationship with the macroscopic Wilson–Cowan model. Incorporating the elements in the model can help identify more realistic regimes of activity and connect the mathematical prediction of increasing nonlinearity to physical manipulations. Our simulations of the temporal profiles reveal dependency on the binary state of interacting subpopulations and the random property of structural network at the transition points, when different synaptic weights are considered. For substantial configurations of stimulus intensity, our model provides further estimates of the neural population's dynamics, ranging from simple-periodic to aperiodic patterns and phase transition regimes. This reflects the potential contribution of the microscopic nonlinear scheme to the mean-field approximation in studying the collective behaviour of individual neurons with particularly concentrating on the occurrence of critical phenomena. We show that finite-size effects kick the system in a state of irregular modes to evolve differently from predictions of the original Wilson–Cowan reference. Additionally, we report that the complexity and temporal diversity of neural dynamics, especially in terms of limit cycle trajectory, and synchronization can be induced by either small heterogeneity in the degree of various types of local excitatory connectivity or considerable diversity in the external drive to the excitatory pool.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
机灵的凡松完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
科研通AI6应助NXK采纳,获得10
3秒前
神锋天下完成签到,获得积分10
3秒前
Misaky发布了新的文献求助10
3秒前
3秒前
明芬发布了新的文献求助10
4秒前
郭甜甜发布了新的文献求助20
4秒前
4秒前
乐一李应助洁净的访文采纳,获得10
5秒前
Asura完成签到,获得积分10
7秒前
十三完成签到 ,获得积分10
7秒前
7秒前
个性的抽象完成签到 ,获得积分10
8秒前
zhuiyu发布了新的文献求助10
8秒前
科研通AI6应助牛牛采纳,获得10
9秒前
李爱国应助吴学仕采纳,获得10
9秒前
DDD应助积极的凌波采纳,获得10
10秒前
轻松的枫叶完成签到,获得积分20
10秒前
kiminonawa应助读书的时候采纳,获得10
10秒前
楚楚完成签到 ,获得积分10
11秒前
小巧寒烟完成签到,获得积分10
11秒前
zxy发布了新的文献求助10
12秒前
科研通AI2S应助Szw666采纳,获得10
12秒前
紧张的铅笔完成签到,获得积分10
12秒前
欢喜的迎丝完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
善学以致用应助凡尘浮生采纳,获得10
14秒前
14秒前
大个应助卷卷采纳,获得10
14秒前
田様应助程博士采纳,获得10
15秒前
15秒前
16秒前
16秒前
chys完成签到 ,获得积分10
16秒前
林小汐汐汐完成签到,获得积分20
16秒前
melody发布了新的文献求助10
18秒前
淡然妙松发布了新的文献求助10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694141
求助须知:如何正确求助?哪些是违规求助? 5095906
关于积分的说明 15212994
捐赠科研通 4850815
什么是DOI,文献DOI怎么找? 2602009
邀请新用户注册赠送积分活动 1553827
关于科研通互助平台的介绍 1511800