亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The dance of neurons: Exploring nonlinear dynamics in brain networks

舞蹈 动力学(音乐) 神经科学 非线性系统 认知科学 计算机科学 心理学 物理 艺术 视觉艺术 教育学 量子力学
作者
Maryam Saadati,Saba Sadat Khodaei,Yousef Jamali
出处
期刊:Communications in Nonlinear Science and Numerical Simulation [Elsevier]
卷期号:: 108133-108133
标识
DOI:10.1016/j.cnsns.2024.108133
摘要

The brain is a complex, nonlinear system, exhibiting ever-evolving patterns of activities, whether in the presence or absence of external stimuli or task demands. Nonlinearity can notably obscure the link between structural constraints enforced on the interaction and its dynamical consequences. Suitable nonlinear dynamical models and their analysis serve as essential tools not only for bridging structural and functional understanding of the brain but also for predictably altering the complex dynamical organization of the brain. Here, starting from a large-scale network of threshold Hodgkin–Huxley style neurons, we formulate the average nonlinear dynamics implicitly following from the Wilson–Cowan assumptions. We investigate the influence of biophysical and structural properties on the complexity of neural dynamics at the microscale level and its relationship with the macroscopic Wilson–Cowan model. Incorporating the elements in the model can help identify more realistic regimes of activity and connect the mathematical prediction of increasing nonlinearity to physical manipulations. Our simulations of the temporal profiles reveal dependency on the binary state of interacting subpopulations and the random property of structural network at the transition points, when different synaptic weights are considered. For substantial configurations of stimulus intensity, our model provides further estimates of the neural population's dynamics, ranging from simple-periodic to aperiodic patterns and phase transition regimes. This reflects the potential contribution of the microscopic nonlinear scheme to the mean-field approximation in studying the collective behaviour of individual neurons with particularly concentrating on the occurrence of critical phenomena. We show that finite-size effects kick the system in a state of irregular modes to evolve differently from predictions of the original Wilson–Cowan reference. Additionally, we report that the complexity and temporal diversity of neural dynamics, especially in terms of limit cycle trajectory, and synchronization can be induced by either small heterogeneity in the degree of various types of local excitatory connectivity or considerable diversity in the external drive to the excitatory pool.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
karstbing发布了新的文献求助10
1秒前
cy0824完成签到 ,获得积分10
2秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
Criminology34应助科研通管家采纳,获得10
59秒前
搜集达人应助科研通管家采纳,获得10
59秒前
Achuia完成签到,获得积分10
2分钟前
2分钟前
程若男完成签到,获得积分10
2分钟前
小唐完成签到,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
汉堡包应助Fairy采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Akim应助lngenuo采纳,获得30
3分钟前
4分钟前
4分钟前
4分钟前
Wei发布了新的文献求助10
4分钟前
4分钟前
Fairy发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
5分钟前
hb完成签到,获得积分10
5分钟前
紫熊完成签到,获得积分10
5分钟前
啸西风完成签到,获得积分10
5分钟前
孙严青完成签到,获得积分10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
wanci应助野性的少司缘采纳,获得10
7分钟前
7分钟前
7分钟前
William完成签到 ,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714938
求助须知:如何正确求助?哪些是违规求助? 5228707
关于积分的说明 15273909
捐赠科研通 4866079
什么是DOI,文献DOI怎么找? 2612676
邀请新用户注册赠送积分活动 1562848
关于科研通互助平台的介绍 1520139