The dance of neurons: Exploring nonlinear dynamics in brain networks

舞蹈 动力学(音乐) 神经科学 非线性系统 认知科学 计算机科学 心理学 物理 艺术 视觉艺术 教育学 量子力学
作者
Maryam Saadati,Saba Sadat Khodaei,Yousef Jamali
出处
期刊:Communications in Nonlinear Science and Numerical Simulation [Elsevier]
卷期号:: 108133-108133
标识
DOI:10.1016/j.cnsns.2024.108133
摘要

The brain is a complex, nonlinear system, exhibiting ever-evolving patterns of activities, whether in the presence or absence of external stimuli or task demands. Nonlinearity can notably obscure the link between structural constraints enforced on the interaction and its dynamical consequences. Suitable nonlinear dynamical models and their analysis serve as essential tools not only for bridging structural and functional understanding of the brain but also for predictably altering the complex dynamical organization of the brain. Here, starting from a large-scale network of threshold Hodgkin–Huxley style neurons, we formulate the average nonlinear dynamics implicitly following from the Wilson–Cowan assumptions. We investigate the influence of biophysical and structural properties on the complexity of neural dynamics at the microscale level and its relationship with the macroscopic Wilson–Cowan model. Incorporating the elements in the model can help identify more realistic regimes of activity and connect the mathematical prediction of increasing nonlinearity to physical manipulations. Our simulations of the temporal profiles reveal dependency on the binary state of interacting subpopulations and the random property of structural network at the transition points, when different synaptic weights are considered. For substantial configurations of stimulus intensity, our model provides further estimates of the neural population's dynamics, ranging from simple-periodic to aperiodic patterns and phase transition regimes. This reflects the potential contribution of the microscopic nonlinear scheme to the mean-field approximation in studying the collective behaviour of individual neurons with particularly concentrating on the occurrence of critical phenomena. We show that finite-size effects kick the system in a state of irregular modes to evolve differently from predictions of the original Wilson–Cowan reference. Additionally, we report that the complexity and temporal diversity of neural dynamics, especially in terms of limit cycle trajectory, and synchronization can be induced by either small heterogeneity in the degree of various types of local excitatory connectivity or considerable diversity in the external drive to the excitatory pool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷水之完成签到,获得积分10
刚刚
liars完成签到 ,获得积分10
刚刚
anna完成签到,获得积分10
1秒前
1秒前
左右完成签到,获得积分10
1秒前
2233完成签到 ,获得积分10
1秒前
2秒前
FashionBoy应助Lucky采纳,获得10
2秒前
zz完成签到,获得积分10
2秒前
3秒前
阳光下的味道完成签到,获得积分10
4秒前
匹夫发布了新的文献求助10
4秒前
青年才俊发布了新的文献求助10
5秒前
5秒前
李爱国应助anfly采纳,获得10
6秒前
CATH发布了新的文献求助10
6秒前
风浪里完成签到,获得积分10
7秒前
Li应助阿洁采纳,获得30
7秒前
科研通AI2S应助阿洁采纳,获得10
8秒前
wbshore完成签到,获得积分10
8秒前
珍兮完成签到,获得积分10
8秒前
哈哈发布了新的文献求助10
8秒前
9秒前
我是来开会的完成签到,获得积分10
11秒前
aodilee给Cheems的求助进行了留言
12秒前
12秒前
13秒前
14秒前
15秒前
huangyi发布了新的文献求助200
15秒前
科研通AI6应助caicai采纳,获得10
16秒前
霸气师完成签到,获得积分10
16秒前
蔡1发布了新的文献求助10
16秒前
17秒前
Daniel完成签到,获得积分10
17秒前
17秒前
小白发布了新的文献求助10
18秒前
18秒前
19秒前
白羊颈复康完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5317648
求助须知:如何正确求助?哪些是违规求助? 4460126
关于积分的说明 13877368
捐赠科研通 4350368
什么是DOI,文献DOI怎么找? 2389368
邀请新用户注册赠送积分活动 1383539
关于科研通互助平台的介绍 1352917