Medical Vision Generalist: Unifying Medical Imaging Tasks in Context

通才与专种 背景(考古学) 医学影像学 计算机科学 计算机视觉 心理学 认知科学 人工智能 地理 生物 生态学 考古 栖息地
作者
Sucheng Ren,Xiaoke Huang,Xianhang Li,Junfei Xiao,Jieru Mei,Zeyu Wang,Alan Yuille,Yuyin Zhou
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.05565
摘要

This study presents Medical Vision Generalist (MVG), the first foundation model capable of handling various medical imaging tasks -- such as cross-modal synthesis, image segmentation, denoising, and inpainting -- within a unified image-to-image generation framework. Specifically, MVG employs an in-context generation strategy that standardizes the handling of inputs and outputs as images. By treating these tasks as an image generation process conditioned on prompt image-label pairs and input images, this approach enables a flexible unification of various tasks, even those spanning different modalities and datasets. To capitalize on both local and global context, we design a hybrid method combining masked image modeling with autoregressive training for conditional image generation. This hybrid approach yields the most robust performance across all involved medical imaging tasks. To rigorously evaluate MVG's capabilities, we curated the first comprehensive generalist medical vision benchmark, comprising 13 datasets and spanning four imaging modalities (CT, MRI, X-ray, and micro-ultrasound). Our results consistently establish MVG's superior performance, outperforming existing vision generalists, such as Painter and LVM. Furthermore, MVG exhibits strong scalability, with its performance demonstrably improving when trained on a more diverse set of tasks, and can be effectively adapted to unseen datasets with only minimal task-specific samples. The code is available at \url{https://github.com/OliverRensu/MVG}.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵飞兰发布了新的文献求助10
1秒前
flyxga870825发布了新的文献求助10
1秒前
3秒前
3秒前
飘雪完成签到,获得积分20
3秒前
4秒前
HLT发布了新的文献求助10
5秒前
lili完成签到,获得积分10
6秒前
123发布了新的文献求助30
6秒前
6秒前
楼山柳完成签到,获得积分10
7秒前
7秒前
1335804518完成签到 ,获得积分10
8秒前
香蕉觅云应助小杨爱学习采纳,获得10
8秒前
doc发布了新的文献求助10
8秒前
9秒前
猪猪hero发布了新的文献求助10
9秒前
坦率的友菱完成签到,获得积分20
10秒前
miaomiao发布了新的文献求助10
10秒前
酷波er应助机灵飞兰采纳,获得10
11秒前
nicewink发布了新的文献求助10
12秒前
12秒前
orixero应助爱吃西瓜采纳,获得10
12秒前
诚心的以亦完成签到,获得积分20
12秒前
顺心绮兰完成签到,获得积分10
13秒前
14秒前
14秒前
doc完成签到,获得积分20
16秒前
17秒前
LegendThree关注了科研通微信公众号
17秒前
wfrg完成签到,获得积分10
17秒前
17秒前
机灵飞兰完成签到,获得积分10
17秒前
Orange应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
领导范儿应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得30
19秒前
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540542
求助须知:如何正确求助?哪些是违规求助? 3117849
关于积分的说明 9332719
捐赠科研通 2815618
什么是DOI,文献DOI怎么找? 1547675
邀请新用户注册赠送积分活动 721099
科研通“疑难数据库(出版商)”最低求助积分说明 712445