亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DTST: A Dual-aspect Time Series Transformer Model for Fault Diagnosis of Space Power System

变压器 对偶(语法数字) 计算机科学 电子工程 电力系统 系列(地层学) 断层(地质) 电气工程 功率(物理) 工程类 电压 物理 艺术 古生物学 文学类 量子力学 地震学 地质学 生物
作者
Zhiqiang Xu,Mila T. Du,Yujie Zhang,Qiang Miao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tim.2024.3396856
摘要

Fault diagnosis is one of the key technologies for maintaining the reliability and safety of space power systems. High-precision fault diagnosis is crucial to ensuring the normal operation of the system. In recent years, fault diagnosis methods based on traditional deep learning models have matured, but these models have problems capturing long distance dependencies in sequences and are limited to modeling in the temporal dimension. To address these challenges, this paper proposes a novel fault diagnosis method for space power systems, namely Dual-aspect Time Series Transformer (DTST). DTST first adopts a token sequence generation method to decompose the data into two sets of sequence tokens in the temporal and spatial dimensions. Then, by introducing the Transformer, it obtains class tokens for these two sets of sequence tokens and merges them into a global class token for performing fault diagnosis tasks. To validate the rationality of the DTST structural design, this paper conducts comprehensive experiments on the space power system dataset and real telemetry dataset. The experimental results show that, compared to single-structure models, DTST with a dual-structure design performs superiorly in diagnostic performance. Meanwhile, the fusion of dual-structure design has also been adequately demonstrated. Compared to traditional deep learning models and Transformer variant models, DTST demonstrates superior performance and robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LucyMartinez发布了新的文献求助10
8秒前
CipherSage应助读书的时候采纳,获得10
10秒前
16秒前
LucyMartinez发布了新的文献求助20
39秒前
FFFFF发布了新的文献求助10
46秒前
在水一方应助读书的时候采纳,获得10
1分钟前
FFFFF关注了科研通微信公众号
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
丘比特应助读书的时候采纳,获得10
1分钟前
Jasper应助读书的时候采纳,获得10
2分钟前
TBHP完成签到,获得积分10
2分钟前
科研通AI6.1应助LucyMartinez采纳,获得10
2分钟前
su完成签到 ,获得积分20
2分钟前
2分钟前
2分钟前
华仔应助读书的时候采纳,获得10
3分钟前
LucyMartinez发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
nicaicai发布了新的文献求助10
3分钟前
爆米花应助威武的元彤采纳,获得10
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得20
3分钟前
酷波er应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
桐桐应助读书的时候采纳,获得80
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739820
求助须知:如何正确求助?哪些是违规求助? 5389900
关于积分的说明 15339972
捐赠科研通 4882170
什么是DOI,文献DOI怎么找? 2624212
邀请新用户注册赠送积分活动 1572930
关于科研通互助平台的介绍 1529776