DTST: A Dual-aspect Time Series Transformer Model for Fault Diagnosis of Space Power System

变压器 对偶(语法数字) 计算机科学 电子工程 电力系统 系列(地层学) 断层(地质) 电气工程 功率(物理) 工程类 电压 物理 艺术 古生物学 文学类 量子力学 地震学 地质学 生物
作者
Zhiqiang Xu,Mila T. Du,Yujie Zhang,Qiang Miao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tim.2024.3396856
摘要

Fault diagnosis is one of the key technologies for maintaining the reliability and safety of space power systems. High-precision fault diagnosis is crucial to ensuring the normal operation of the system. In recent years, fault diagnosis methods based on traditional deep learning models have matured, but these models have problems capturing long distance dependencies in sequences and are limited to modeling in the temporal dimension. To address these challenges, this paper proposes a novel fault diagnosis method for space power systems, namely Dual-aspect Time Series Transformer (DTST). DTST first adopts a token sequence generation method to decompose the data into two sets of sequence tokens in the temporal and spatial dimensions. Then, by introducing the Transformer, it obtains class tokens for these two sets of sequence tokens and merges them into a global class token for performing fault diagnosis tasks. To validate the rationality of the DTST structural design, this paper conducts comprehensive experiments on the space power system dataset and real telemetry dataset. The experimental results show that, compared to single-structure models, DTST with a dual-structure design performs superiorly in diagnostic performance. Meanwhile, the fusion of dual-structure design has also been adequately demonstrated. Compared to traditional deep learning models and Transformer variant models, DTST demonstrates superior performance and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爆米花应助斑马还没睡采纳,获得10
2秒前
JJ发布了新的文献求助10
2秒前
青山完成签到,获得积分10
3秒前
开朗断秋发布了新的文献求助10
4秒前
CodeCraft应助饭团采纳,获得10
4秒前
5秒前
8秒前
在水一方应助少华采纳,获得10
9秒前
蔡蔡完成签到 ,获得积分10
9秒前
9秒前
默认用户名完成签到,获得积分10
9秒前
10秒前
ctrl少个T完成签到,获得积分20
10秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
scm应助科研通管家采纳,获得30
12秒前
所所应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
现代的访曼应助hdd采纳,获得20
12秒前
曾馨慧发布了新的文献求助10
12秒前
13秒前
胖箭鱼完成签到,获得积分10
13秒前
stuffmatter完成签到,获得积分0
14秒前
14秒前
机智的涑应助goodsheep采纳,获得10
14秒前
默认用户名发布了新的文献求助100
14秒前
ctrl少个T发布了新的文献求助10
14秒前
15秒前
科研通AI2S应助陶醉沅采纳,获得10
17秒前
stuffmatter发布了新的文献求助30
17秒前
量子星尘发布了新的文献求助10
17秒前
朱光辉发布了新的文献求助10
17秒前
hejing关注了科研通微信公众号
18秒前
18秒前
刻苦的白昼完成签到,获得积分20
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959733
求助须知:如何正确求助?哪些是违规求助? 3505997
关于积分的说明 11127227
捐赠科研通 3237941
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871726
科研通“疑难数据库(出版商)”最低求助积分说明 803000