Evaluating Deep Learning Techniques for Detecting Aneurysmal Subarachnoid Hemorrhage: A Comparative Analysis of Convolutional Neural Network and Transfer Learning Models

医学 蛛网膜下腔出血 卷积神经网络 深度学习 学习迁移 人工智能 外科 计算机科学
作者
Mustafa Umut Etli,Muhammet Sinan Başarslan,Eyüp Varol,Hüseyin Sarıkaya,Yunus Emre Çakıcı,Gonca Gül Öndüç,Fatih Bal,Ali Erhan Kayalar,Ömer Aykılıç
出处
期刊:World Neurosurgery [Elsevier BV]
卷期号:187: e807-e813
标识
DOI:10.1016/j.wneu.2024.04.168
摘要

Machine learning (ML) and deep learning (DL) techniques offer a promising multidisciplinary solution for subarachnoid hemorrhage (SAH) detection. The novel transfer learning approach mitigates the time constraints associated with the traditional techniques and demonstrates a superior performance. This study aims to evaluate the effectiveness of convolutional neural networks (CNNs) and CNN-based transfer learning models in differentiating between aneurysmal subarachnoid hemorrhage (aSAH) and nonaneurysmal subarachnoid hemorrhage (naSAH). Data from Istanbul Ümraniye Training and Research Hospital, which included 15,600 DICOM images from 123 patients with aSAH and 7,793 images from 80 patients with naSAH, were used. The study employed four models: Inception-V3, EfficientNetB4, single-layer CNN, and three-layer CNN. Transfer learning models were customized by modifying the last three layers and using the Adam optimizer. The models were trained on Google Collaboratory and evaluated based on metrics such as F-score, precision, recall, and accuracy. EfficientNetB4 demonstrated the highest accuracy (99.92%), with a better F-score (99.82%), recall (99.92%), and precision (99.90%) than the other methods. The single- and three-layer CNNs and the transfer learning models produced comparable results. No overfitting was observed, and robust models were developed. CNN-based transfer learning models can accurately diagnose the etiology of SAH from CT images and is a valuable tool for clinicians. This approach could reduce the need for invasive procedures such as digital subtraction angiography, leading to more efficient medical resource utilization and improved patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
酷波er应助许子健采纳,获得10
1秒前
2秒前
Rondab应助平常的忆文采纳,获得10
3秒前
Charles完成签到,获得积分10
4秒前
怪杰发布了新的文献求助10
4秒前
suiFeng发布了新的文献求助10
5秒前
畅彤发布了新的文献求助10
7秒前
7秒前
CipherSage应助ruiruili采纳,获得10
7秒前
汉堡包应助xixi采纳,获得10
8秒前
彭于晏应助哇咔咔采纳,获得10
9秒前
槐诗完成签到,获得积分10
11秒前
十二平均律完成签到,获得积分10
11秒前
好运连连完成签到 ,获得积分10
12秒前
13秒前
华仔应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得10
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
SYLH应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
彭于晏应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
玉玉应助科研通管家采纳,获得20
16秒前
1111应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
16秒前
专注完成签到,获得积分10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966430
求助须知:如何正确求助?哪些是违规求助? 3511854
关于积分的说明 11160310
捐赠科研通 3246555
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388