Evaluating Deep Learning Techniques for Detecting Aneurysmal Subarachnoid Hemorrhage: A Comparative Analysis of Convolutional Neural Network and Transfer Learning Models

医学 蛛网膜下腔出血 卷积神经网络 深度学习 学习迁移 人工智能 外科 计算机科学
作者
Mustafa Umut Etli,Muhammet Sinan Başarslan,Eyüp Varol,Hüseyin Sarıkaya,Yunus Emre Çakıcı,Gonca Gül Öndüç,Fatih Bal,Ali Erhan Kayalar,Ömer Aykılıç
出处
期刊:World Neurosurgery [Elsevier]
卷期号:187: e807-e813
标识
DOI:10.1016/j.wneu.2024.04.168
摘要

Machine learning (ML) and deep learning (DL) techniques offer a promising multidisciplinary solution for subarachnoid hemorrhage (SAH) detection. The novel transfer learning approach mitigates the time constraints associated with the traditional techniques and demonstrates a superior performance. This study aims to evaluate the effectiveness of convolutional neural networks (CNNs) and CNN-based transfer learning models in differentiating between aneurysmal subarachnoid hemorrhage (aSAH) and nonaneurysmal subarachnoid hemorrhage (naSAH). Data from Istanbul Ümraniye Training and Research Hospital, which included 15,600 DICOM images from 123 patients with aSAH and 7,793 images from 80 patients with naSAH, were used. The study employed four models: Inception-V3, EfficientNetB4, single-layer CNN, and three-layer CNN. Transfer learning models were customized by modifying the last three layers and using the Adam optimizer. The models were trained on Google Collaboratory and evaluated based on metrics such as F-score, precision, recall, and accuracy. EfficientNetB4 demonstrated the highest accuracy (99.92%), with a better F-score (99.82%), recall (99.92%), and precision (99.90%) than the other methods. The single- and three-layer CNNs and the transfer learning models produced comparable results. No overfitting was observed, and robust models were developed. CNN-based transfer learning models can accurately diagnose the etiology of SAH from CT images and is a valuable tool for clinicians. This approach could reduce the need for invasive procedures such as digital subtraction angiography, leading to more efficient medical resource utilization and improved patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助听风采纳,获得10
刚刚
阔达的扬发布了新的文献求助10
2秒前
Douest完成签到 ,获得积分20
4秒前
顺利水杯完成签到,获得积分20
4秒前
ljc完成签到 ,获得积分10
7秒前
在水一方应助源子采纳,获得10
8秒前
清脆的天亦完成签到 ,获得积分10
9秒前
10秒前
酷炫蛋挞完成签到 ,获得积分10
11秒前
14秒前
ZS完成签到,获得积分10
14秒前
劲秉应助完美的海秋采纳,获得50
14秒前
14秒前
听风发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
SSSstriker发布了新的文献求助10
20秒前
可爱的函函应助kkkk采纳,获得10
23秒前
124332发布了新的文献求助10
23秒前
港岛妹妹应助倪妮采纳,获得10
23秒前
源子发布了新的文献求助10
23秒前
我是老大应助mizo木子李采纳,获得10
25秒前
bkagyin应助科研通管家采纳,获得30
26秒前
充电宝应助科研通管家采纳,获得10
26秒前
Lucas应助科研通管家采纳,获得10
26秒前
无花果应助科研通管家采纳,获得10
26秒前
慕青应助科研通管家采纳,获得10
26秒前
CodeCraft应助科研通管家采纳,获得10
26秒前
在水一方应助科研通管家采纳,获得10
26秒前
27秒前
烟花应助科研通管家采纳,获得10
27秒前
烟花应助科研通管家采纳,获得10
27秒前
情怀应助科研通管家采纳,获得30
27秒前
27秒前
搜集达人应助科研通管家采纳,获得10
27秒前
Owen应助科研通管家采纳,获得10
27秒前
香蕉觅云应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264819
求助须知:如何正确求助?哪些是违规求助? 2904784
关于积分的说明 8331584
捐赠科研通 2575093
什么是DOI,文献DOI怎么找? 1399658
科研通“疑难数据库(出版商)”最低求助积分说明 654537
邀请新用户注册赠送积分活动 633296