医学
蛛网膜下腔出血
卷积神经网络
深度学习
学习迁移
人工智能
外科
计算机科学
作者
Mustafa Umut Etli,Muhammet Sinan Başarslan,Eyüp Varol,Hüseyin Sarıkaya,Yunus Emre Çakıcı,Gonca Gül Öndüç,Fatih Bal,Ali Erhan Kayalar,Ömer Aykılıç
标识
DOI:10.1016/j.wneu.2024.04.168
摘要
Machine learning (ML) and deep learning (DL) techniques offer a promising multidisciplinary solution for subarachnoid hemorrhage (SAH) detection. The novel transfer learning approach mitigates the time constraints associated with the traditional techniques and demonstrates a superior performance. This study aims to evaluate the effectiveness of convolutional neural networks (CNNs) and CNN-based transfer learning models in differentiating between aneurysmal subarachnoid hemorrhage (aSAH) and nonaneurysmal subarachnoid hemorrhage (naSAH). Data from Istanbul Ümraniye Training and Research Hospital, which included 15,600 DICOM images from 123 patients with aSAH and 7,793 images from 80 patients with naSAH, were used. The study employed four models: Inception-V3, EfficientNetB4, single-layer CNN, and three-layer CNN. Transfer learning models were customized by modifying the last three layers and using the Adam optimizer. The models were trained on Google Collaboratory and evaluated based on metrics such as F-score, precision, recall, and accuracy. EfficientNetB4 demonstrated the highest accuracy (99.92%), with a better F-score (99.82%), recall (99.92%), and precision (99.90%) than the other methods. The single- and three-layer CNNs and the transfer learning models produced comparable results. No overfitting was observed, and robust models were developed. CNN-based transfer learning models can accurately diagnose the etiology of SAH from CT images and is a valuable tool for clinicians. This approach could reduce the need for invasive procedures such as digital subtraction angiography, leading to more efficient medical resource utilization and improved patient outcomes.
科研通智能强力驱动
Strongly Powered by AbleSci AI