亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluating Deep Learning Techniques for Detecting Aneurysmal Subarachnoid Hemorrhage: A Comparative Analysis of Convolutional Neural Network and Transfer Learning Models

医学 蛛网膜下腔出血 卷积神经网络 深度学习 学习迁移 人工智能 外科 计算机科学
作者
Mustafa Umut Etli,Muhammet Sinan Başarslan,Eyüp Varol,Hüseyin Sarıkaya,Yunus Emre Çakıcı,Gonca Gül Öndüç,Fatih Bal,Ali Erhan Kayalar,Ömer Aykılıç
出处
期刊:World Neurosurgery [Elsevier]
卷期号:187: e807-e813
标识
DOI:10.1016/j.wneu.2024.04.168
摘要

Machine learning (ML) and deep learning (DL) techniques offer a promising multidisciplinary solution for subarachnoid hemorrhage (SAH) detection. The novel transfer learning approach mitigates the time constraints associated with the traditional techniques and demonstrates a superior performance. This study aims to evaluate the effectiveness of convolutional neural networks (CNNs) and CNN-based transfer learning models in differentiating between aneurysmal subarachnoid hemorrhage (aSAH) and nonaneurysmal subarachnoid hemorrhage (naSAH). Data from Istanbul Ümraniye Training and Research Hospital, which included 15,600 DICOM images from 123 patients with aSAH and 7,793 images from 80 patients with naSAH, were used. The study employed four models: Inception-V3, EfficientNetB4, single-layer CNN, and three-layer CNN. Transfer learning models were customized by modifying the last three layers and using the Adam optimizer. The models were trained on Google Collaboratory and evaluated based on metrics such as F-score, precision, recall, and accuracy. EfficientNetB4 demonstrated the highest accuracy (99.92%), with a better F-score (99.82%), recall (99.92%), and precision (99.90%) than the other methods. The single- and three-layer CNNs and the transfer learning models produced comparable results. No overfitting was observed, and robust models were developed. CNN-based transfer learning models can accurately diagnose the etiology of SAH from CT images and is a valuable tool for clinicians. This approach could reduce the need for invasive procedures such as digital subtraction angiography, leading to more efficient medical resource utilization and improved patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦耳青梦发布了新的文献求助10
1秒前
Pengfei_Soil发布了新的文献求助10
4秒前
5秒前
11秒前
13秒前
yyds完成签到,获得积分0
14秒前
17秒前
嘻嘻嘻完成签到,获得积分10
17秒前
20秒前
21秒前
2jz发布了新的文献求助10
25秒前
maopf发布了新的文献求助10
30秒前
小蘑菇应助结实的凉面采纳,获得10
32秒前
32秒前
qianyixingchen完成签到 ,获得积分10
36秒前
SciGPT应助沉默的倔驴采纳,获得10
37秒前
迅速初柳发布了新的文献求助10
38秒前
maopf完成签到,获得积分10
42秒前
c7发布了新的文献求助10
43秒前
英俊的铭应助迅速初柳采纳,获得10
46秒前
47秒前
西蓝花战士完成签到 ,获得积分10
51秒前
52秒前
炙热成仁发布了新的文献求助10
53秒前
NI完成签到 ,获得积分10
59秒前
1分钟前
赘婿应助悦耳青梦采纳,获得10
1分钟前
科研通AI6.1应助我不吃葱采纳,获得10
1分钟前
科研通AI6.1应助小年小少采纳,获得20
1分钟前
炙热成仁完成签到,获得积分10
1分钟前
希希完成签到 ,获得积分10
1分钟前
Joy关注了科研通微信公众号
1分钟前
Hello应助沉默的倔驴采纳,获得10
1分钟前
奶奶的龙应助科研通管家采纳,获得10
1分钟前
奶奶的龙应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
奶奶的龙应助科研通管家采纳,获得10
1分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746540
求助须知:如何正确求助?哪些是违规求助? 5435517
关于积分的说明 15355531
捐赠科研通 4886528
什么是DOI,文献DOI怎么找? 2627297
邀请新用户注册赠送积分活动 1575762
关于科研通互助平台的介绍 1532510