Exploring Fusion Techniques and Explainable AI on Adapt-FuseNet: Context-Adaptive Fusion of Face and Gait for Person Identification

鉴定(生物学) 步态 背景(考古学) 面子(社会学概念) 人工智能 计算机科学 融合 计算机视觉 传感器融合 物理医学与康复 医学 地理 生物 社会学 社会科学 语言学 哲学 植物 考古
作者
S Thejaswin,Ashwin Prakash,Athira Nambiar,Alexandre Bernadino
出处
期刊:IEEE transactions on biometrics, behavior, and identity science [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tbiom.2024.3405081
摘要

Biometrics such as human gait and face play a significant role in vision-based surveillance applications. However, multimodal fusion of biometric features is a challenging task in non-controlled environments due to varying reliability of the features from different modalities in changing contexts, such as viewpoints, illuminations, occlusion, background clutter, and clothing. For instance, in person identification in the wild, facial and gait features play a complementary role, as, in principle, face provides more discriminatory features than gait if the person is frontal to the camera, while gait features are more discriminative in lateral views. Classical fusion techniques typically address this problem by explicitly computing in which context the data is obtained (e.g. frontal or lateral) and designing custom data fusion strategies for each context. However, this requires an initial enumeration of all the possible contexts and the design of context "detectors", which bring their own challenges. Hence, how to effectively utilize both facial and gait information in arbitrary conditions is still an open problem. In this paper we present a context-adaptive multi-biometric fusion strategy that does not require the prior determination of context features; instead, the context is implicitly encoded in the fusion process by a set of attentional weights that encode the relevance of the different modalities for each particular data sample. The key contributions of the paper are threefold. First, we propose a novel framework for the dynamic fusion of multiple biometrics modalities leveraging attention techniques, denoted 'Adapt-FuseNet'. Second, we perform an extensive evaluation of the proposed method in comparison to various other fusion techniques such as Bilinear Pooling, Parallel Co-attention, Keyless Attention, Multi-modal Factorized High-order Pooling, and Multimodal Tucker Fusion. Third, an Explainable Artificial Intelligence-based interpretation tool is used to analyse how the attention mechanism of 'Adapt-FuseNet' is capturing context implicitly and making the best weighting of the different modalities for the task at hand. This enables the interpretability of results in a more human-compliant way, hence boosting our confidence of the operation of AI systems in the wild. Extensive experiments are carried out on two public gait datasets (CASIA-A and CASIA-B), showing that 'Adapt-FuseNet' significantly outperforms the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
百里静枫完成签到,获得积分10
1秒前
1秒前
满心欢喜完成签到 ,获得积分10
1秒前
阿秋完成签到,获得积分10
1秒前
2秒前
lx5461完成签到,获得积分10
2秒前
蒋政发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
serafinaX完成签到,获得积分20
4秒前
4秒前
enen发布了新的文献求助10
4秒前
axl发布了新的文献求助10
4秒前
梁小米完成签到,获得积分10
4秒前
Joyce完成签到,获得积分10
5秒前
青枣不甜完成签到,获得积分10
6秒前
搬砖的化学男举报半兰求助涉嫌违规
6秒前
寒霁发布了新的文献求助10
6秒前
桐桐应助Adam采纳,获得10
7秒前
7秒前
不加糖完成签到,获得积分10
8秒前
涩郎发布了新的文献求助10
8秒前
刚刚好发布了新的文献求助10
9秒前
打打应助BYN采纳,获得10
9秒前
打打应助啃啃啃采纳,获得10
9秒前
10秒前
ZZ完成签到,获得积分10
10秒前
11秒前
蒋政完成签到,获得积分20
11秒前
111完成签到,获得积分20
11秒前
axl完成签到,获得积分10
12秒前
Guochunbao完成签到,获得积分10
12秒前
Jasper应助涩郎采纳,获得10
13秒前
佟碧玉完成签到,获得积分10
13秒前
幽一发布了新的文献求助10
14秒前
14秒前
科研通AI2S应助王昕澳采纳,获得10
14秒前
111发布了新的文献求助10
15秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3075498
求助须知:如何正确求助?哪些是违规求助? 2728589
关于积分的说明 7505148
捐赠科研通 2376734
什么是DOI,文献DOI怎么找? 1260264
科研通“疑难数据库(出版商)”最低求助积分说明 610928
版权声明 597149