已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Exploring Fusion Techniques and Explainable AI on Adapt-FuseNet: Context-Adaptive Fusion of Face and Gait for Person Identification

鉴定(生物学) 步态 背景(考古学) 面子(社会学概念) 人工智能 计算机科学 融合 计算机视觉 传感器融合 物理医学与康复 医学 地理 生物 社会学 社会科学 语言学 哲学 植物 考古
作者
S Thejaswin,Ashwin Prakash,Athira Nambiar,Alexandre Bernadino
出处
期刊:IEEE transactions on biometrics, behavior, and identity science [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tbiom.2024.3405081
摘要

Biometrics such as human gait and face play a significant role in vision-based surveillance applications. However, multimodal fusion of biometric features is a challenging task in non-controlled environments due to varying reliability of the features from different modalities in changing contexts, such as viewpoints, illuminations, occlusion, background clutter, and clothing. For instance, in person identification in the wild, facial and gait features play a complementary role, as, in principle, face provides more discriminatory features than gait if the person is frontal to the camera, while gait features are more discriminative in lateral views. Classical fusion techniques typically address this problem by explicitly computing in which context the data is obtained (e.g. frontal or lateral) and designing custom data fusion strategies for each context. However, this requires an initial enumeration of all the possible contexts and the design of context "detectors", which bring their own challenges. Hence, how to effectively utilize both facial and gait information in arbitrary conditions is still an open problem. In this paper we present a context-adaptive multi-biometric fusion strategy that does not require the prior determination of context features; instead, the context is implicitly encoded in the fusion process by a set of attentional weights that encode the relevance of the different modalities for each particular data sample. The key contributions of the paper are threefold. First, we propose a novel framework for the dynamic fusion of multiple biometrics modalities leveraging attention techniques, denoted 'Adapt-FuseNet'. Second, we perform an extensive evaluation of the proposed method in comparison to various other fusion techniques such as Bilinear Pooling, Parallel Co-attention, Keyless Attention, Multi-modal Factorized High-order Pooling, and Multimodal Tucker Fusion. Third, an Explainable Artificial Intelligence-based interpretation tool is used to analyse how the attention mechanism of 'Adapt-FuseNet' is capturing context implicitly and making the best weighting of the different modalities for the task at hand. This enables the interpretability of results in a more human-compliant way, hence boosting our confidence of the operation of AI systems in the wild. Extensive experiments are carried out on two public gait datasets (CASIA-A and CASIA-B), showing that 'Adapt-FuseNet' significantly outperforms the state-of-the-art.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助阳光的星月采纳,获得10
刚刚
1秒前
guaishou完成签到,获得积分10
1秒前
LAN完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
传奇3应助科研通管家采纳,获得10
5秒前
优美紫槐应助科研通管家采纳,获得10
5秒前
Criminology34应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
迷路的沛芹完成签到 ,获得积分0
5秒前
崔灿完成签到 ,获得积分10
5秒前
mo完成签到 ,获得积分10
8秒前
10秒前
14秒前
transition发布了新的文献求助10
16秒前
17秒前
超级的人达完成签到 ,获得积分10
19秒前
gao0505完成签到,获得积分10
20秒前
葵花籽完成签到,获得积分10
24秒前
25秒前
友好诗霜完成签到 ,获得积分10
26秒前
Tong123完成签到,获得积分10
27秒前
Dannnn完成签到 ,获得积分10
29秒前
Milktea123完成签到,获得积分10
31秒前
31秒前
干净思远完成签到,获得积分10
32秒前
赘婿应助陨落星辰采纳,获得10
34秒前
李爱国应助聪慧的致远采纳,获得10
34秒前
Able完成签到,获得积分10
38秒前
脱锦涛完成签到 ,获得积分10
42秒前
Meyako完成签到 ,获得积分0
43秒前
44秒前
CipherSage应助hh采纳,获得10
47秒前
陨落星辰发布了新的文献求助10
48秒前
transition发布了新的文献求助10
48秒前
SciGPT应助Chloe采纳,获得10
49秒前
HJJHJH发布了新的文献求助10
50秒前
Cosmosurfer完成签到,获得积分10
54秒前
transition完成签到,获得积分10
55秒前
罗皮特完成签到 ,获得积分10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
4th edition, Qualitative Data Analysis with NVivo Jenine Beekhuyzen, Pat Bazeley 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611827
求助须知:如何正确求助?哪些是违规求助? 4695978
关于积分的说明 14890007
捐赠科研通 4727175
什么是DOI,文献DOI怎么找? 2545923
邀请新用户注册赠送积分活动 1510337
关于科研通互助平台的介绍 1473236