Exploring Fusion Techniques and Explainable AI on Adapt-FuseNet: Context-Adaptive Fusion of Face and Gait for Person Identification

鉴定(生物学) 步态 背景(考古学) 面子(社会学概念) 人工智能 计算机科学 融合 计算机视觉 传感器融合 物理医学与康复 医学 地理 生物 社会学 社会科学 语言学 哲学 植物 考古
作者
S Thejaswin,Ashwin Prakash,Athira Nambiar,Alexandre Bernadino
出处
期刊:IEEE transactions on biometrics, behavior, and identity science [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tbiom.2024.3405081
摘要

Biometrics such as human gait and face play a significant role in vision-based surveillance applications. However, multimodal fusion of biometric features is a challenging task in non-controlled environments due to varying reliability of the features from different modalities in changing contexts, such as viewpoints, illuminations, occlusion, background clutter, and clothing. For instance, in person identification in the wild, facial and gait features play a complementary role, as, in principle, face provides more discriminatory features than gait if the person is frontal to the camera, while gait features are more discriminative in lateral views. Classical fusion techniques typically address this problem by explicitly computing in which context the data is obtained (e.g. frontal or lateral) and designing custom data fusion strategies for each context. However, this requires an initial enumeration of all the possible contexts and the design of context "detectors", which bring their own challenges. Hence, how to effectively utilize both facial and gait information in arbitrary conditions is still an open problem. In this paper we present a context-adaptive multi-biometric fusion strategy that does not require the prior determination of context features; instead, the context is implicitly encoded in the fusion process by a set of attentional weights that encode the relevance of the different modalities for each particular data sample. The key contributions of the paper are threefold. First, we propose a novel framework for the dynamic fusion of multiple biometrics modalities leveraging attention techniques, denoted 'Adapt-FuseNet'. Second, we perform an extensive evaluation of the proposed method in comparison to various other fusion techniques such as Bilinear Pooling, Parallel Co-attention, Keyless Attention, Multi-modal Factorized High-order Pooling, and Multimodal Tucker Fusion. Third, an Explainable Artificial Intelligence-based interpretation tool is used to analyse how the attention mechanism of 'Adapt-FuseNet' is capturing context implicitly and making the best weighting of the different modalities for the task at hand. This enables the interpretability of results in a more human-compliant way, hence boosting our confidence of the operation of AI systems in the wild. Extensive experiments are carried out on two public gait datasets (CASIA-A and CASIA-B), showing that 'Adapt-FuseNet' significantly outperforms the state-of-the-art.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
peterwang35完成签到 ,获得积分10
1秒前
科研小白完成签到,获得积分10
2秒前
CC完成签到 ,获得积分10
2秒前
猪小猪完成签到,获得积分10
2秒前
李劲亭完成签到,获得积分10
4秒前
4秒前
爱笑的枫叶完成签到,获得积分10
4秒前
DLDL完成签到,获得积分10
5秒前
dadadala完成签到 ,获得积分10
5秒前
张张洼完成签到,获得积分10
6秒前
zzzzzzzp完成签到,获得积分10
6秒前
herococa应助mly采纳,获得10
7秒前
无极微光应助ljf采纳,获得20
8秒前
haha完成签到,获得积分10
9秒前
飘逸的尔安完成签到,获得积分10
9秒前
史莱姆姆完成签到,获得积分10
9秒前
邱琳发布了新的文献求助10
10秒前
乐观海云完成签到 ,获得积分10
10秒前
阔达萤完成签到 ,获得积分10
10秒前
听话的萤完成签到,获得积分10
10秒前
JS完成签到,获得积分10
10秒前
fan051500完成签到,获得积分10
11秒前
一条小胖鱼完成签到,获得积分10
11秒前
11秒前
zhangsf88完成签到,获得积分10
11秒前
vffg完成签到,获得积分10
12秒前
starry完成签到,获得积分10
13秒前
小王完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
不会写论文的小蜜蜂完成签到 ,获得积分10
14秒前
wwww完成签到,获得积分10
14秒前
dadada完成签到 ,获得积分10
15秒前
dake完成签到,获得积分10
15秒前
willam发布了新的文献求助10
15秒前
嘟嘟豆806完成签到 ,获得积分0
15秒前
lucia5354完成签到,获得积分10
15秒前
e394282438完成签到,获得积分10
16秒前
16秒前
David123完成签到,获得积分10
16秒前
林韵悠扬完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645248
求助须知:如何正确求助?哪些是违规求助? 4768236
关于积分的说明 15027213
捐赠科研通 4803788
什么是DOI,文献DOI怎么找? 2568456
邀请新用户注册赠送积分活动 1525787
关于科研通互助平台的介绍 1485451