清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Exploring Fusion Techniques and Explainable AI on Adapt-FuseNet: Context-Adaptive Fusion of Face and Gait for Person Identification

鉴定(生物学) 步态 背景(考古学) 面子(社会学概念) 人工智能 计算机科学 融合 计算机视觉 传感器融合 物理医学与康复 医学 地理 生物 社会学 社会科学 语言学 哲学 植物 考古
作者
S Thejaswin,Ashwin Prakash,Athira Nambiar,Alexandre Bernadino
出处
期刊:IEEE transactions on biometrics, behavior, and identity science [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tbiom.2024.3405081
摘要

Biometrics such as human gait and face play a significant role in vision-based surveillance applications. However, multimodal fusion of biometric features is a challenging task in non-controlled environments due to varying reliability of the features from different modalities in changing contexts, such as viewpoints, illuminations, occlusion, background clutter, and clothing. For instance, in person identification in the wild, facial and gait features play a complementary role, as, in principle, face provides more discriminatory features than gait if the person is frontal to the camera, while gait features are more discriminative in lateral views. Classical fusion techniques typically address this problem by explicitly computing in which context the data is obtained (e.g. frontal or lateral) and designing custom data fusion strategies for each context. However, this requires an initial enumeration of all the possible contexts and the design of context "detectors", which bring their own challenges. Hence, how to effectively utilize both facial and gait information in arbitrary conditions is still an open problem. In this paper we present a context-adaptive multi-biometric fusion strategy that does not require the prior determination of context features; instead, the context is implicitly encoded in the fusion process by a set of attentional weights that encode the relevance of the different modalities for each particular data sample. The key contributions of the paper are threefold. First, we propose a novel framework for the dynamic fusion of multiple biometrics modalities leveraging attention techniques, denoted 'Adapt-FuseNet'. Second, we perform an extensive evaluation of the proposed method in comparison to various other fusion techniques such as Bilinear Pooling, Parallel Co-attention, Keyless Attention, Multi-modal Factorized High-order Pooling, and Multimodal Tucker Fusion. Third, an Explainable Artificial Intelligence-based interpretation tool is used to analyse how the attention mechanism of 'Adapt-FuseNet' is capturing context implicitly and making the best weighting of the different modalities for the task at hand. This enables the interpretability of results in a more human-compliant way, hence boosting our confidence of the operation of AI systems in the wild. Extensive experiments are carried out on two public gait datasets (CASIA-A and CASIA-B), showing that 'Adapt-FuseNet' significantly outperforms the state-of-the-art.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
雪山飞龙发布了新的文献求助10
11秒前
大医仁心完成签到 ,获得积分10
16秒前
科研通AI2S应助ceeray23采纳,获得20
31秒前
ceeray23发布了新的文献求助20
47秒前
李健的小迷弟应助ceeray23采纳,获得20
1分钟前
1分钟前
希望天下0贩的0应助liwen采纳,获得10
1分钟前
1分钟前
klpkyx发布了新的文献求助10
1分钟前
klpkyx完成签到,获得积分10
1分钟前
1分钟前
liwen发布了新的文献求助10
1分钟前
DoctorTa发布了新的文献求助30
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
DoctorTa完成签到,获得积分10
1分钟前
juan完成签到 ,获得积分0
1分钟前
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得20
3分钟前
老迟到的友桃完成签到 ,获得积分10
3分钟前
开心惜梦完成签到,获得积分10
3分钟前
4分钟前
淡然觅荷完成签到 ,获得积分10
4分钟前
虚幻的岩完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
直率的笑翠完成签到 ,获得积分10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
gexzygg应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
番茄酱完成签到 ,获得积分10
5分钟前
詹姆斯哈登完成签到,获得积分10
6分钟前
方白秋完成签到,获得积分0
6分钟前
雪山飞龙完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554977
求助须知:如何正确求助?哪些是违规求助? 4639572
关于积分的说明 14656373
捐赠科研通 4581518
什么是DOI,文献DOI怎么找? 2512837
邀请新用户注册赠送积分活动 1487527
关于科研通互助平台的介绍 1458503