数学
博格达诺夫-塔肯分岔
余维数
分叉
简并能级
霍普夫分叉
鞍结分岔
跨临界分岔
常量(计算机编程)
应用数学
同宿轨道
同宿分支
数学分析
非线性系统
物理
计算机科学
程序设计语言
量子力学
作者
Hongqiuxue Wu,Zhong Li,Mengxin He
标识
DOI:10.1142/s0218127424500767
摘要
In this paper, we introduce constant-yield prey harvesting into the Holling–Tanner model with generalist predator. We prove that the unique positive equilibrium is a cusp of codimension 4. As the parameter values change, the system exhibits degenerate Bogdanov–Takens bifurcation of codimension 4. Using the resultant elimination method, we show that the positive equilibrium is a weak focus of order 2, and the system undergoes degenerate Hopf bifurcation of codimension 2 and has two limit cycles. By numerical simulations, we demonstrate that the system exhibits homoclinic bifurcation and saddle–node bifurcation of limit cycles as the parameters are varied. The main results show that constant-yield prey harvesting and generalist predator can lead to complex dynamic behavior of the model.
科研通智能强力驱动
Strongly Powered by AbleSci AI