Graph ensemble neural network

计算机科学 图形 人工智能 理论计算机科学
作者
Rui Duan,Chungang Yan,Junli Wang,Changjun Jiang
出处
期刊:Information Fusion [Elsevier BV]
卷期号:110: 102461-102461 被引量:3
标识
DOI:10.1016/j.inffus.2024.102461
摘要

Ensemble methods have been shown to improve graph neural networks (GNNs). Existing ensemble methods on graphs determine a strong classifier by combining a set of trained base classifiers, i.e., combining the final outputs of base classifiers for prediction. However, these methods fail to promote many popular GNNs to perform well under heterophily (in graphs where many connected nodes have different class labels), which limits their applicability. Furthermore, they ignore the hierarchical nature of GNNs, which results in no interaction between base classifiers when neighbors are aggregated (during training). Two issues arise from this: low applicability and shallow ensemble. We propose Graph Ensemble Neural Network (GEN) for addressing above issues, which is not a simple ensemble of GNNs, but instead integrates ensemble into GNNs to fuse a set of graphs. GEN deepens single ensemble into multiple ensembles during training and applies to homophily and heterophily graphs. In GEN, we design structure augmentation to generate some graphs for training and design feature augmentation for attenuating errors brought by the initial features. Different from existing graph ensemble methods that execute only one ensemble, GEN executes multiple deep ensembles throughout the neighbor aggregation to fuse multiple graphs generated by structure augmentation. Extensive experiments show that GEN achieves new state-of-the-art performance on homophily and heterophily graphs for the semi- and full-supervised node classification. The source code of GEN is publicly available at https://github.com/graphNN/GEN1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tracy10完成签到,获得积分10
刚刚
刚刚
HEIKU应助努力采纳,获得10
刚刚
1秒前
benny279完成签到,获得积分10
1秒前
小猪手发布了新的文献求助10
2秒前
漂亮灵阳完成签到,获得积分10
3秒前
CodeCraft应助小刀采纳,获得10
3秒前
4秒前
黄文博发布了新的文献求助10
4秒前
ccc完成签到,获得积分10
4秒前
4秒前
无花果应助Xiang采纳,获得10
5秒前
CipherSage应助Xiang采纳,获得10
5秒前
5秒前
犹豫寒云完成签到,获得积分10
6秒前
脑洞疼应助安静的火车采纳,获得10
6秒前
tracy10发布了新的文献求助10
7秒前
怦怦应助月半猫采纳,获得10
7秒前
8秒前
8秒前
小顾完成签到,获得积分20
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
pluto应助科研通管家采纳,获得40
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
ChenXY应助科研通管家采纳,获得40
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
积极向上完成签到,获得积分10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
10秒前
合适友儿发布了新的文献求助10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281244
关于积分的说明 10023902
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644908
邀请新用户注册赠送积分活动 782421
科研通“疑难数据库(出版商)”最低求助积分说明 749792