亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graph ensemble neural network

计算机科学 图形 人工智能 理论计算机科学
作者
Rui Duan,Chungang Yan,Junli Wang,Changjun Jiang
出处
期刊:Information Fusion [Elsevier BV]
卷期号:110: 102461-102461 被引量:3
标识
DOI:10.1016/j.inffus.2024.102461
摘要

Ensemble methods have been shown to improve graph neural networks (GNNs). Existing ensemble methods on graphs determine a strong classifier by combining a set of trained base classifiers, i.e., combining the final outputs of base classifiers for prediction. However, these methods fail to promote many popular GNNs to perform well under heterophily (in graphs where many connected nodes have different class labels), which limits their applicability. Furthermore, they ignore the hierarchical nature of GNNs, which results in no interaction between base classifiers when neighbors are aggregated (during training). Two issues arise from this: low applicability and shallow ensemble. We propose Graph Ensemble Neural Network (GEN) for addressing above issues, which is not a simple ensemble of GNNs, but instead integrates ensemble into GNNs to fuse a set of graphs. GEN deepens single ensemble into multiple ensembles during training and applies to homophily and heterophily graphs. In GEN, we design structure augmentation to generate some graphs for training and design feature augmentation for attenuating errors brought by the initial features. Different from existing graph ensemble methods that execute only one ensemble, GEN executes multiple deep ensembles throughout the neighbor aggregation to fuse multiple graphs generated by structure augmentation. Extensive experiments show that GEN achieves new state-of-the-art performance on homophily and heterophily graphs for the semi- and full-supervised node classification. The source code of GEN is publicly available at https://github.com/graphNN/GEN1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jueshadi发布了新的文献求助10
1秒前
打打应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
hengistdeng完成签到,获得积分10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
2秒前
9秒前
13秒前
koman发布了新的文献求助10
14秒前
云霞完成签到 ,获得积分10
15秒前
16秒前
沁沁沁发布了新的文献求助10
18秒前
ceeray23发布了新的文献求助20
19秒前
koman完成签到,获得积分20
21秒前
yx_cheng完成签到,获得积分0
21秒前
安详初蓝完成签到 ,获得积分10
25秒前
彩色映雁完成签到 ,获得积分10
25秒前
小松鼠完成签到 ,获得积分10
31秒前
GingerF应助Peng采纳,获得50
37秒前
小二郎应助nhh采纳,获得10
42秒前
Peng完成签到,获得积分10
45秒前
sheldoo完成签到 ,获得积分10
49秒前
51秒前
Marshall完成签到 ,获得积分10
54秒前
nhh发布了新的文献求助10
55秒前
kyfbrahha完成签到 ,获得积分10
55秒前
枫于林完成签到 ,获得积分10
58秒前
jueshadi发布了新的文献求助10
1分钟前
李健应助YDX采纳,获得10
1分钟前
搜集达人应助ceeray23采纳,获得20
1分钟前
哟嚛完成签到,获得积分10
1分钟前
Hiraeth完成签到 ,获得积分10
1分钟前
1分钟前
lizibelle发布了新的文献求助10
1分钟前
NexusExplorer应助行素采纳,获得10
1分钟前
1分钟前
小吴发布了新的文献求助10
1分钟前
1分钟前
行素发布了新的文献求助10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994955
求助须知:如何正确求助?哪些是违规求助? 3535071
关于积分的说明 11267066
捐赠科研通 3274842
什么是DOI,文献DOI怎么找? 1806483
邀请新用户注册赠送积分活动 883335
科研通“疑难数据库(出版商)”最低求助积分说明 809762