Adaptive Optimal Motion Control of Uncertain Underactuated Mechatronic Systems With Actuator Constraints

欠驱动 控制理论(社会学) 李雅普诺夫函数 控制工程 机电一体化 控制器(灌溉) 计算机科学 线性化 自适应控制 工程类 控制(管理) 人工智能 非线性系统 农学 物理 量子力学 生物
作者
Tong Yang,Ning Sun,He Chen,Yongchun Fang
出处
期刊:IEEE-ASME Transactions on Mechatronics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 210-222 被引量:50
标识
DOI:10.1109/tmech.2022.3192002
摘要

Underactuated mechatronic systems are widely used in industrial production, where the control efforts and operation accuracy are both important aspects of performance evaluations. Hence, how to realize effective motion control, while reducing control efforts as much as possible, becomes an open problem for underactuated systems. Although some open loop approaches (e.g., trajectory planning) take energy optimization into account, they need linearization/approximation manipulations and exhibit weak robustness, which is prone to degrading practical control performance. To this end, this article proposes an adaptive tracking controller for uncertain multi-input-multi- output (MIMO) underactuated mechatronic systems, to fulfill accurate positioning/tracking control with saturated inputs and reduce control efforts as well. Particularly, by elaborately developing an auxiliary compensation term and a robust term, the proposed controller ensures asymptotic convergence of both actuated and unactuated variables. Meanwhile, the modified performance index function is approximated online and introduced into the Lyapunov function candidate to make the stability analysis process more concise . To the best of our knowledge, without the need of offline computation and the persistence of excitation (PE) condition, this article presents the first adaptive optimal controller to simultaneously achieve error elimination, control effort optimization, and actuator constraints for a class of underactuated systems. Finally, strict theoretical analysis and experimental validations show the effectiveness and robustness of the suggested controller.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助清新的灵寒采纳,获得30
刚刚
djiwisksk66应助筱小筱采纳,获得10
刚刚
1秒前
共享精神应助gi采纳,获得10
1秒前
POLLY发布了新的文献求助10
1秒前
邹友亮完成签到,获得积分10
2秒前
2秒前
2秒前
Zero发布了新的文献求助10
2秒前
大个应助拼搏听寒采纳,获得10
5秒前
jia发布了新的文献求助10
5秒前
研友_VZG7GZ应助Ann采纳,获得10
6秒前
wangwang2168完成签到,获得积分10
6秒前
犹豫千儿发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
上官若男应助科研通管家采纳,获得10
8秒前
yixiaoqi发布了新的文献求助10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
wy.he应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
9秒前
9秒前
慕青应助科研通管家采纳,获得10
9秒前
传奇3应助wwz采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
Orange应助太叔书南采纳,获得10
9秒前
菜小芽发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
Puan发布了新的文献求助10
11秒前
11秒前
Hello应助JoaquinH采纳,获得10
12秒前
好玩ab完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971125
求助须知:如何正确求助?哪些是违规求助? 3515824
关于积分的说明 11179811
捐赠科研通 3250971
什么是DOI,文献DOI怎么找? 1795610
邀请新用户注册赠送积分活动 875897
科研通“疑难数据库(出版商)”最低求助积分说明 805207