System analysis based on the pyroptosis-related genes identifies GSDMC as a novel therapy target for pancreatic adenocarcinoma

列线图 单变量 比例危险模型 肿瘤科 胰腺癌 医学 单变量分析 腺癌 内科学 多元分析 生物信息学 多元统计 生物 癌症 计算机科学 机器学习
作者
Cheng Yan,Yandie Niu,Feng Li,Wei Zhao,Liukai Ma
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:20 (1) 被引量:26
标识
DOI:10.1186/s12967-022-03632-z
摘要

Abstract Background Pancreatic adenocarcinoma (PAAD) is one of the most common malignant tumors of the digestive tract. Pyroptosis is a newly discovered programmed cell death that highly correlated with the prognosis of tumors. However, the prognostic value of pyroptosis in PAAD remains unclear. Methods A total of 178 pancreatic cancer PAAD samples and 167 normal samples were obtained from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. The “DESeq2” R package was used to identify differntially expressed pyroptosis-related genes between normal pancreatic samples and PAAD samples. The prognostic model was established in TCGA cohort based on univariate Cox and the least absolute shrinkage and selection operator (LASSO) Cox regression analyses, which was validated in test set from Gene Expression Omnibus (GEO) cohort. Univariate independent prognostic analysis and multivariate independent prognostic analysis were used to determine whether the risk score can be used as an independent prognostic factor to predict the clinicopathological features of PAAD patients. A nomogram was used to predict the survival probability of PAAD patients, which could help in clinical decision-making. The R package "pRRophetic" was applied to calculate the drug sensitivity of each samples from high- and low-risk group. Tumor immune infiltration was investigated using an ESTIMATE algorithm. Finally, the pro‐tumor phenotype of GSDMC was explored in PANC-1 and CFPAC-1 cells. Result On the basis of univariate Cox and LASSO regression analyses, we constructed a risk model with identified five pyroptosis-related genes (IL18, CASP4, NLRP1, GSDMC, and NLRP2), which was validated in the test set. The PAAD samples were divided into high-risk and low-risk groups on the basis of the risk score's median. According to Kaplan Meier curve analysis, samples from high-risk groups had worse outcomes than those from low-risk groups. The time-dependent receiver operating characteristics (ROC) analysis revealed that the risk model could predict the prognosis of PAAD accurately. A nomogram accompanied by calibration curves was presented for predicting 1-, 2-, and 3-year survival in PAAD patients. More importantly, 4 small molecular compounds (A.443654, PD.173074, Epothilone. B, Lapatinib) were identified, which might be potential drugs for the treatment of PAAD patients. Finally, the depletion of GSDMC inhibits the proliferation, invasion, and migration of pancreatic adenocarcinoma cells. Conclusion In this study, we developed a pyroptosis-related prognostic model based on IL18, CASP4, NLRP1, NLRP2, and GSDMC , which may be helpful for clinicians to make clinical decisions for PAAD patients and provide valuable insights for individualized treatment. Our result suggest that GSDMC may promote the proliferation and migration of PAAD cell lines. These findings may provide new insights into the roles of pyroptosis-related genes in PAAD, and offer new therapeutic targets for the treatment of PAAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
viper3完成签到,获得积分10
刚刚
fsy应助mmol采纳,获得10
刚刚
3秒前
落后以旋完成签到,获得积分10
3秒前
科研通AI2S应助淡淡的雨双采纳,获得40
4秒前
华仔应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得50
4秒前
fsfyy完成签到,获得积分10
4秒前
雪芜发布了新的文献求助20
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
5秒前
ding应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
5秒前
7秒前
7秒前
wzgkeyantong完成签到,获得积分10
7秒前
落后以旋发布了新的文献求助10
7秒前
现代青菜完成签到 ,获得积分10
8秒前
Ava应助fsfyy采纳,获得10
8秒前
淡淡文博完成签到,获得积分10
10秒前
12秒前
WQ发布了新的文献求助10
13秒前
Hu完成签到 ,获得积分10
14秒前
橘子汽水完成签到,获得积分20
14秒前
马俊豪完成签到 ,获得积分10
14秒前
15秒前
feng_qi001发布了新的文献求助10
15秒前
15秒前
今后应助崔尔蓉采纳,获得10
17秒前
17秒前
JW完成签到,获得积分10
18秒前
酷波er应助ljs采纳,获得10
19秒前
19秒前
Orange应助nt1119采纳,获得10
20秒前
20秒前
科研通AI2S应助Jocelyn采纳,获得10
21秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124390
求助须知:如何正确求助?哪些是违规求助? 2774743
关于积分的说明 7723567
捐赠科研通 2430180
什么是DOI,文献DOI怎么找? 1290974
科研通“疑难数据库(出版商)”最低求助积分说明 622006
版权声明 600297