已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A clustering approach to domestic electricity load profile characterisation using smart metering data

聚类分析 计算机科学 测光模式 智能电表 数据挖掘 过程(计算) 维数(图论) 智能电网 工程类 人工智能 数学 机械工程 操作系统 电气工程 纯数学
作者
Fintan McLoughlin,Aidan Duffy,Michael Conlon
出处
期刊:Applied Energy [Elsevier]
卷期号:141: 190-199 被引量:421
标识
DOI:10.1016/j.apenergy.2014.12.039
摘要

The availability of increasing amounts of data to electricity utilities through the implementation of domestic smart metering campaigns has meant that traditional ways of analysing meter reading information such as descriptive statistics has become increasingly difficult. Key characteristic information to the data is often lost, particularly when averaging or aggregation processes are applied. Therefore, other methods of analysing data need to be used so that this information is not lost. One such method which lends itself to analysing large amounts of information is data mining. This allows for the data to be segmented before such aggregation processes are applied. Moreover, segmentation allows for dimension reduction thus enabling easier manipulation of the data. Clustering methods have been used in the electricity industry for some time. However, their use at a domestic level has been somewhat limited to date. This paper investigates three of the most widely used unsupervised clustering methods: k-means, k-medoid and Self Organising Maps (SOM). The best performing technique is then evaluated in order to segment individual households into clusters based on their pattern of electricity use across the day. The process is repeated for each day over a six month period in order to characterise the diurnal, intra-daily and seasonal variations of domestic electricity demand. Based on these results a series of Profile Classes (PC’s) are presented that represent common patterns of electricity use within the home. Finally, each PC is linked to household characteristics by applying a multi-nominal logistic regression to the data. As a result, households and the manner with which they use electricity in the home can be characterised based on individual customer attributes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gn完成签到,获得积分10
1秒前
椿萱并茂应助Albert007采纳,获得10
2秒前
3秒前
小二郎应助old杜采纳,获得10
4秒前
夏栀mall发布了新的文献求助10
4秒前
Ly完成签到 ,获得积分10
7秒前
7秒前
xiaoyang完成签到 ,获得积分10
7秒前
大模型应助张宝采纳,获得10
7秒前
dzjin发布了新的文献求助10
8秒前
幽幽完成签到,获得积分10
8秒前
9秒前
9秒前
所所应助粗暴的季节采纳,获得10
9秒前
wonder123发布了新的文献求助10
12秒前
Awaken发布了新的文献求助10
14秒前
小余同学完成签到,获得积分10
16秒前
竹园发布了新的文献求助10
17秒前
迷路的含桃完成签到 ,获得积分10
17秒前
卢大赛完成签到 ,获得积分10
19秒前
开心蛋挞完成签到 ,获得积分10
19秒前
19秒前
邓芊语完成签到,获得积分20
20秒前
21秒前
22秒前
zbearupz完成签到,获得积分10
23秒前
高亚楠发布了新的文献求助10
23秒前
福医小蟹发布了新的文献求助10
25秒前
26秒前
叶艳完成签到 ,获得积分10
26秒前
传奇3应助竹园采纳,获得10
26秒前
Ava应助dzjin采纳,获得10
27秒前
underoos完成签到,获得积分10
29秒前
L123发布了新的文献求助10
31秒前
32秒前
福医小蟹完成签到,获得积分10
32秒前
33秒前
yf发布了新的文献求助100
35秒前
彭于晏应助kuankuan采纳,获得10
35秒前
大模型应助Awaken采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407331
求助须知:如何正确求助?哪些是违规求助? 4524961
关于积分的说明 14100432
捐赠科研通 4438702
什么是DOI,文献DOI怎么找? 2436460
邀请新用户注册赠送积分活动 1428436
关于科研通互助平台的介绍 1406479