A clustering approach to domestic electricity load profile characterisation using smart metering data

聚类分析 计算机科学 测光模式 智能电表 数据挖掘 过程(计算) 维数(图论) 智能电网 工程类 人工智能 数学 纯数学 操作系统 机械工程 电气工程
作者
Fintan McLoughlin,Aidan Duffy,Michael Conlon
出处
期刊:Applied Energy [Elsevier BV]
卷期号:141: 190-199 被引量:421
标识
DOI:10.1016/j.apenergy.2014.12.039
摘要

The availability of increasing amounts of data to electricity utilities through the implementation of domestic smart metering campaigns has meant that traditional ways of analysing meter reading information such as descriptive statistics has become increasingly difficult. Key characteristic information to the data is often lost, particularly when averaging or aggregation processes are applied. Therefore, other methods of analysing data need to be used so that this information is not lost. One such method which lends itself to analysing large amounts of information is data mining. This allows for the data to be segmented before such aggregation processes are applied. Moreover, segmentation allows for dimension reduction thus enabling easier manipulation of the data. Clustering methods have been used in the electricity industry for some time. However, their use at a domestic level has been somewhat limited to date. This paper investigates three of the most widely used unsupervised clustering methods: k-means, k-medoid and Self Organising Maps (SOM). The best performing technique is then evaluated in order to segment individual households into clusters based on their pattern of electricity use across the day. The process is repeated for each day over a six month period in order to characterise the diurnal, intra-daily and seasonal variations of domestic electricity demand. Based on these results a series of Profile Classes (PC’s) are presented that represent common patterns of electricity use within the home. Finally, each PC is linked to household characteristics by applying a multi-nominal logistic regression to the data. As a result, households and the manner with which they use electricity in the home can be characterised based on individual customer attributes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿Q关注了科研通微信公众号
刚刚
释棱完成签到 ,获得积分10
刚刚
一定长发布了新的文献求助10
1秒前
言余完成签到,获得积分10
2秒前
小盼虫发布了新的文献求助10
2秒前
tw007007发布了新的文献求助10
2秒前
3秒前
3秒前
万能图书馆应助海鸥采纳,获得10
3秒前
YMS_DAMAOMI发布了新的文献求助10
5秒前
三笠发布了新的文献求助10
6秒前
8秒前
8秒前
风华发布了新的文献求助10
8秒前
10秒前
11秒前
我是老大应助一定长采纳,获得10
12秒前
iNk应助一定长采纳,获得20
12秒前
烟花应助一定长采纳,获得10
12秒前
完美世界应助一定长采纳,获得10
12秒前
AGuang应助一定长采纳,获得20
12秒前
SYLH应助一定长采纳,获得10
12秒前
王王的苏应助一定长采纳,获得10
12秒前
12秒前
qianyuan发布了新的文献求助10
12秒前
wl完成签到,获得积分10
12秒前
12秒前
桐桐应助落后爆米花采纳,获得10
13秒前
css发布了新的文献求助10
13秒前
yn发布了新的文献求助10
14秒前
终澈发布了新的文献求助10
14秒前
吼吼吼发布了新的文献求助10
14秒前
14秒前
gnufgg完成签到,获得积分10
16秒前
ling发布了新的文献求助10
16秒前
18秒前
18秒前
19秒前
19秒前
上官若男应助Han采纳,获得10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959531
求助须知:如何正确求助?哪些是违规求助? 3505774
关于积分的说明 11125924
捐赠科研通 3237671
什么是DOI,文献DOI怎么找? 1789239
邀请新用户注册赠送积分活动 871623
科研通“疑难数据库(出版商)”最低求助积分说明 802902