A clustering approach to domestic electricity load profile characterisation using smart metering data

聚类分析 计算机科学 测光模式 智能电表 数据挖掘 过程(计算) 维数(图论) 智能电网 工程类 人工智能 数学 机械工程 操作系统 电气工程 纯数学
作者
Fintan McLoughlin,Aidan Duffy,Michael Conlon
出处
期刊:Applied Energy [Elsevier]
卷期号:141: 190-199 被引量:421
标识
DOI:10.1016/j.apenergy.2014.12.039
摘要

The availability of increasing amounts of data to electricity utilities through the implementation of domestic smart metering campaigns has meant that traditional ways of analysing meter reading information such as descriptive statistics has become increasingly difficult. Key characteristic information to the data is often lost, particularly when averaging or aggregation processes are applied. Therefore, other methods of analysing data need to be used so that this information is not lost. One such method which lends itself to analysing large amounts of information is data mining. This allows for the data to be segmented before such aggregation processes are applied. Moreover, segmentation allows for dimension reduction thus enabling easier manipulation of the data. Clustering methods have been used in the electricity industry for some time. However, their use at a domestic level has been somewhat limited to date. This paper investigates three of the most widely used unsupervised clustering methods: k-means, k-medoid and Self Organising Maps (SOM). The best performing technique is then evaluated in order to segment individual households into clusters based on their pattern of electricity use across the day. The process is repeated for each day over a six month period in order to characterise the diurnal, intra-daily and seasonal variations of domestic electricity demand. Based on these results a series of Profile Classes (PC’s) are presented that represent common patterns of electricity use within the home. Finally, each PC is linked to household characteristics by applying a multi-nominal logistic regression to the data. As a result, households and the manner with which they use electricity in the home can be characterised based on individual customer attributes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
song完成签到 ,获得积分10
刚刚
小芳芳完成签到 ,获得积分10
刚刚
MrRen完成签到,获得积分10
3秒前
林洁佳完成签到,获得积分10
3秒前
奋斗天德完成签到 ,获得积分10
3秒前
5秒前
惊天大幂幂完成签到,获得积分10
8秒前
于是完成签到,获得积分10
9秒前
可爱的函函应助帅气的祥采纳,获得10
10秒前
方方完成签到 ,获得积分10
10秒前
懒羊羊发布了新的文献求助10
10秒前
11秒前
陈老太完成签到 ,获得积分10
12秒前
完美凝竹完成签到,获得积分10
12秒前
coolru完成签到,获得积分10
14秒前
张莹完成签到 ,获得积分10
18秒前
拼搏问薇完成签到 ,获得积分10
18秒前
www268完成签到 ,获得积分10
19秒前
20秒前
帅气的祥发布了新的文献求助10
23秒前
缓慢雅青完成签到 ,获得积分10
25秒前
领导范儿应助老火采纳,获得10
28秒前
ALEX521完成签到 ,获得积分10
31秒前
咖啡味椰果完成签到 ,获得积分10
34秒前
39秒前
挽风完成签到 ,获得积分10
39秒前
ggplot2发布了新的文献求助10
44秒前
YULIA完成签到,获得积分10
44秒前
wangsai完成签到,获得积分10
45秒前
花生米一粒粒完成签到,获得积分10
46秒前
zdu完成签到,获得积分10
47秒前
哔哩哔哩往上爬完成签到 ,获得积分10
47秒前
和谐的醉山完成签到,获得积分10
47秒前
布吉岛完成签到,获得积分10
51秒前
xiaoguang li完成签到,获得积分10
56秒前
淡淡完成签到,获得积分10
57秒前
有魅力荟完成签到,获得积分10
1分钟前
含蓄的明雪完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139684
求助须知:如何正确求助?哪些是违规求助? 2790623
关于积分的说明 7795749
捐赠科研通 2447017
什么是DOI,文献DOI怎么找? 1301553
科研通“疑难数据库(出版商)”最低求助积分说明 626264
版权声明 601176