A clustering approach to domestic electricity load profile characterisation using smart metering data

聚类分析 计算机科学 测光模式 智能电表 数据挖掘 过程(计算) 维数(图论) 智能电网 工程类 人工智能 数学 机械工程 操作系统 电气工程 纯数学
作者
Fintan McLoughlin,Aidan Duffy,Michael Conlon
出处
期刊:Applied Energy [Elsevier]
卷期号:141: 190-199 被引量:421
标识
DOI:10.1016/j.apenergy.2014.12.039
摘要

The availability of increasing amounts of data to electricity utilities through the implementation of domestic smart metering campaigns has meant that traditional ways of analysing meter reading information such as descriptive statistics has become increasingly difficult. Key characteristic information to the data is often lost, particularly when averaging or aggregation processes are applied. Therefore, other methods of analysing data need to be used so that this information is not lost. One such method which lends itself to analysing large amounts of information is data mining. This allows for the data to be segmented before such aggregation processes are applied. Moreover, segmentation allows for dimension reduction thus enabling easier manipulation of the data. Clustering methods have been used in the electricity industry for some time. However, their use at a domestic level has been somewhat limited to date. This paper investigates three of the most widely used unsupervised clustering methods: k-means, k-medoid and Self Organising Maps (SOM). The best performing technique is then evaluated in order to segment individual households into clusters based on their pattern of electricity use across the day. The process is repeated for each day over a six month period in order to characterise the diurnal, intra-daily and seasonal variations of domestic electricity demand. Based on these results a series of Profile Classes (PC’s) are presented that represent common patterns of electricity use within the home. Finally, each PC is linked to household characteristics by applying a multi-nominal logistic regression to the data. As a result, households and the manner with which they use electricity in the home can be characterised based on individual customer attributes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小狐狸完成签到,获得积分10
刚刚
刚刚
Wangjf完成签到 ,获得积分10
刚刚
刚刚
在水一方应助柯卿彦采纳,获得10
1秒前
2秒前
FairyLeaf完成签到 ,获得积分10
2秒前
JamesPei应助Sherlock采纳,获得10
2秒前
专注的枫叶完成签到,获得积分10
3秒前
缥缈幻翠完成签到,获得积分10
3秒前
柒月发布了新的文献求助10
3秒前
嘎嘎的鸡神完成签到,获得积分10
3秒前
执着的井发布了新的文献求助10
4秒前
大力哈密瓜完成签到,获得积分10
4秒前
茉莉花茶发布了新的文献求助10
4秒前
小马甲应助PWQ采纳,获得10
4秒前
承蒙大爱完成签到,获得积分10
5秒前
迷路的猎豹完成签到,获得积分10
6秒前
CipherSage应助公冶菲鹰采纳,获得10
6秒前
可爱的函函应助敏感盼秋采纳,获得10
6秒前
loin完成签到,获得积分0
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
何豫完成签到,获得积分10
8秒前
于丽萍完成签到 ,获得积分10
8秒前
8秒前
woaikeyan完成签到,获得积分10
8秒前
9秒前
10秒前
流云明谷完成签到,获得积分10
10秒前
10秒前
谦让的含海应助qqxin采纳,获得10
10秒前
sevenseven完成签到,获得积分10
11秒前
科研通AI6应助迷路的猎豹采纳,获得10
11秒前
努力学习ing完成签到 ,获得积分10
11秒前
12秒前
12秒前
xiaoding完成签到,获得积分10
12秒前
盛小铃完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005