A clustering approach to domestic electricity load profile characterisation using smart metering data

聚类分析 计算机科学 测光模式 智能电表 数据挖掘 过程(计算) 维数(图论) 智能电网 工程类 人工智能 数学 机械工程 操作系统 电气工程 纯数学
作者
Fintan McLoughlin,Aidan Duffy,Michael Conlon
出处
期刊:Applied Energy [Elsevier]
卷期号:141: 190-199 被引量:421
标识
DOI:10.1016/j.apenergy.2014.12.039
摘要

The availability of increasing amounts of data to electricity utilities through the implementation of domestic smart metering campaigns has meant that traditional ways of analysing meter reading information such as descriptive statistics has become increasingly difficult. Key characteristic information to the data is often lost, particularly when averaging or aggregation processes are applied. Therefore, other methods of analysing data need to be used so that this information is not lost. One such method which lends itself to analysing large amounts of information is data mining. This allows for the data to be segmented before such aggregation processes are applied. Moreover, segmentation allows for dimension reduction thus enabling easier manipulation of the data. Clustering methods have been used in the electricity industry for some time. However, their use at a domestic level has been somewhat limited to date. This paper investigates three of the most widely used unsupervised clustering methods: k-means, k-medoid and Self Organising Maps (SOM). The best performing technique is then evaluated in order to segment individual households into clusters based on their pattern of electricity use across the day. The process is repeated for each day over a six month period in order to characterise the diurnal, intra-daily and seasonal variations of domestic electricity demand. Based on these results a series of Profile Classes (PC’s) are presented that represent common patterns of electricity use within the home. Finally, each PC is linked to household characteristics by applying a multi-nominal logistic regression to the data. As a result, households and the manner with which they use electricity in the home can be characterised based on individual customer attributes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
思源应助紫菜采纳,获得10
1秒前
葛力发布了新的文献求助20
1秒前
tingting关注了科研通微信公众号
1秒前
1秒前
2秒前
爆螺钉完成签到,获得积分20
2秒前
所所应助风中莫英采纳,获得10
2秒前
3秒前
善学以致用应助Longy采纳,获得10
3秒前
活泼的花生完成签到,获得积分10
3秒前
zhang005on完成签到,获得积分10
3秒前
superspace完成签到,获得积分10
3秒前
3秒前
科研通AI2S应助看不懂采纳,获得10
4秒前
4秒前
amanda完成签到,获得积分10
4秒前
miaomiao完成签到,获得积分10
5秒前
zzz完成签到,获得积分10
5秒前
dark灵发布了新的文献求助10
5秒前
13344完成签到 ,获得积分10
6秒前
yuxiaohua完成签到,获得积分10
6秒前
bittersugar发布了新的文献求助10
6秒前
6秒前
6秒前
liu完成签到 ,获得积分10
7秒前
993494543完成签到,获得积分10
7秒前
洪悦冰应助leinuo077采纳,获得10
7秒前
ZXL完成签到,获得积分20
8秒前
可爱的函函应助灯灯采纳,获得10
8秒前
知非发布了新的文献求助10
8秒前
8秒前
承欢完成签到,获得积分10
8秒前
九九发布了新的文献求助10
8秒前
滴滴滴完成签到,获得积分10
8秒前
8秒前
9秒前
高xuewen完成签到,获得积分10
9秒前
迷人绿柏发布了新的文献求助10
9秒前
SciKid524完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645392
求助须知:如何正确求助?哪些是违规求助? 4768659
关于积分的说明 15028508
捐赠科研通 4803961
什么是DOI,文献DOI怎么找? 2568583
邀请新用户注册赠送积分活动 1525914
关于科研通互助平台的介绍 1485551