A parallel MPI+OpenMP+OpenCL algorithm for hybrid supercomputations of incompressible flows

计算机科学 并行计算 超级计算机 移植 库达 巨量平行 GPU群集 计算科学 软件 操作系统
作者
A. Gorobets,F. Xavier Trias,A. Oliva
出处
期刊:Computers & Fluids [Elsevier]
卷期号:88: 764-772 被引量:27
标识
DOI:10.1016/j.compfluid.2013.05.021
摘要

The work is devoted to the development of efficient parallel algorithms for large-scale simulations of incompressible flows on hybrid supercomputers based on massively-parallel accelerators. The governing equations are discretized using a high-order finite-volume scheme for Cartesian staggered meshes with the only restriction that, at least, one direction is periodic. Its "classical" MPI + OpenMP parallel implementation for CPUs was designed to scale till 100,000 CPU cores. The new hybrid algorithm is developed on a base of a multi-level parallel model that exploits several layers of parallelism of a modern hybrid supercomputer. In this model, MPI and OpenMP are used on the first two levels to couple nodes of a supercomputer and to engage its CPU cores. Then, computing accelerators are further used by means of the hardware independent OpenCL computing standard. In this way, the implementation is adapted to a general computing model with central processors and math co-processors. In this paper the work is focused on adapting the basic operations of the algorithm to architectures of Graphics Processing Units (GPU) without considering the multi-GPU communication scheme. Technology of porting the code to OpenCL is described, certain optimization approaches are presented and relevant performance results obtaining up to 80–90 GFLOPS on a GPU accelerator are demonstrated. Moreover, the experience with different GPU architectures is summarized and a comparison based on the particular application is given for AMD and NVIDIA GPUs as well as for CUDA and OpenCL frameworks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助qaq采纳,获得10
刚刚
世界尽头发布了新的文献求助10
刚刚
小二郎应助科研民工采纳,获得10
刚刚
1秒前
无奈满天发布了新的文献求助10
1秒前
2秒前
MADKAI发布了新的文献求助10
2秒前
2秒前
贪玩丸子完成签到,获得积分10
2秒前
神勇的雅香应助liutaili采纳,获得10
3秒前
KSGGS完成签到,获得积分10
3秒前
YANG关注了科研通微信公众号
3秒前
4秒前
4秒前
4秒前
99发布了新的文献求助10
5秒前
5秒前
科研通AI5应助qi采纳,获得10
5秒前
乐乐发布了新的文献求助10
6秒前
铸一字错发布了新的文献求助10
6秒前
受伤书文完成签到,获得积分10
7秒前
Yvonne发布了新的文献求助10
7秒前
7秒前
温柔的十三完成签到,获得积分10
7秒前
Ll发布了新的文献求助10
8秒前
nikai发布了新的文献求助10
8秒前
圣晟胜发布了新的文献求助10
8秒前
大个应助科研通管家采纳,获得10
8秒前
8秒前
田様应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
Leif应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
shouyu29应助科研通管家采纳,获得10
9秒前
9秒前
小金应助科研通管家采纳,获得20
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759