非谐性
声子
格子(音乐)
热导率
凝聚态物理
无定形固体
热电材料
压缩传感
热电效应
物理
材料科学
热的
热力学
化学
计算机科学
人工智能
有机化学
声学
作者
Fei Zhou,Weston Nielson,Yi Xia,Vidvuds Ozoliņš
标识
DOI:10.1103/physrevlett.113.185501
摘要
First-principles prediction of lattice thermal conductivity κ(L) of strongly anharmonic crystals is a long-standing challenge in solid-state physics. Making use of recent advances in information science, we propose a systematic and rigorous approach to this problem, compressive sensing lattice dynamics. Compressive sensing is used to select the physically important terms in the lattice dynamics model and determine their values in one shot. Nonintuitively, high accuracy is achieved when the model is trained on first-principles forces in quasirandom atomic configurations. The method is demonstrated for Si, NaCl, and Cu(12)Sb(4)S(13), an earth-abundant thermoelectric with strong phonon-phonon interactions that limit the room-temperature κ(L) to values near the amorphous limit.
科研通智能强力驱动
Strongly Powered by AbleSci AI