生物
核酸序列
病毒学
肽序列
α病毒
聚腺苷酸
遗传学
病毒
聚合酶
氨基酸
核苷酸
衣壳
核糖核酸
基因
作者
Afjal Hossain Khan,Kouichi Morita,Maria del Carmen Parquet,Futoshi Hasebe,Edward Gitau Matumbi Mathenge,Akira Igarashi
标识
DOI:10.1099/0022-1317-83-12-3075
摘要
In this study, the complete genomic sequence of chikungunya virus (CHIK; S27 African prototype) was determined and the presence of an internal polyadenylation [I-poly(A)] site was confirmed within the 3′ non-translated region (NTR) of this strain. The complete genome was 11805 nucleotides in length, excluding the 5′ cap nucleotide, an I-poly(A) tract and the 3′ poly(A) tail. It comprised two long open reading frames that encoded the non-structural (2474 amino acids) and structural polyproteins (1244 amino acids). The genetic location of the non-structural and structural proteins was predicted by comparing the deduced amino acid sequences with the known cleavage sites of other alphaviruses, located at the C-terminal region of their virus-encoded proteins. In addition, predicted secondary structures were identified within the 5′ NTR and repeated sequence elements (RSEs) within the 3′ NTR. Amino acid sequence homologies, phylogenetic analysis of non-structural and structural proteins and characteristic RSEs revealed that although CHIK is closely related to o’nyong-nyong virus, it is in fact a distinct virus. The existence of I-poly(A) fragments with different lengths (e.g. 19, 36, 43, 91, 94 and 106 adenine nucleotides) at identical initiation positions for each clone strongly suggests that the polymerase of the alphaviruses has a capacity to create poly(A) by a template-dependant mechanism such as ‘polymerase slippage’, as has been reported for vesicular stomatitis virus.
科研通智能强力驱动
Strongly Powered by AbleSci AI