Gil D. Rabinovici,Ansgar J. Furst,James P. O’Neil,Caroline A. Racine,Elizabeth C. Mormino,Suzanne L. Baker,Shivan Chetty,Paras R. Patel,T. A. Pagliaro,William E. Klunk,Chester A. Mathis,Howard J. Rosen,Bruce L. Miller,William J. Jagust
The PET tracer (11)C-labeled Pittsburgh Compound-B ((11)C-PIB) specifically binds fibrillar amyloid-beta (Abeta) plaques and can be detected in Alzheimer disease (AD). We hypothesized that PET imaging with (11)C-PIB would discriminate AD from frontotemporal lobar degeneration (FTLD), a non-Abeta dementia.Patients meeting research criteria for AD (n = 7) or FTLD (n = 12) and cognitively normal controls (n = 8) underwent PET imaging with (11)C-PIB (patients and controls) and (18)F-fluorodeoxyglucose ((18)F-FDG) (patients only). (11)C-PIB whole brain and region of interest (ROI) distribution volume ratios (DVR) were calculated using Logan graphical analysis with cerebellum as a reference region. DVR images were visually rated by a blinded investigator as positive or negative for cortical (11)C-PIB, and summed (18)F-FDG images were rated as consistent with AD or FTLD.All patients with AD (7/7) had positive (11)C-PIB scans by visual inspection, while 8/12 patients with FTLD and 7/8 controls had negative scans. Of the four PIB-positive patients with FTLD, two had (18)F-FDG scans that suggested AD, and two had (18)F-FDG scans suggestive of FTLD. Mean DVRs were higher in AD than in FTLD in whole brain, lateral frontal, precuneus, and lateral temporal cortex (p < 0.05), while DVRs in FTLD did not significantly differ from controls.PET imaging with (11)C-labeled Pittsburgh Compound-B ((11)C-PIB) helps discriminate Alzheimer disease (AD) from frontotemporal lobar degeneration (FTLD). Pathologic correlation is needed to determine whether patients with PIB-positive FTLD represent false positives, comorbid FTLD/AD pathology, or AD pathology mimicking an FTLD clinical syndrome.