化学
电解质
天然有机质
纳米颗粒
二价
富勒烯
超滤(肾)
水溶液
有机质
化学工程
金属
无机化学
色谱法
有机化学
物理化学
工程类
电极
作者
Mohai Shen,Yongguang Yin,Andy M. Booth,Jingfu Liu
标识
DOI:10.1016/j.watres.2014.12.025
摘要
Given the wide presence of heterogeneous natural organic matter (NOM) and metal ions (Na+/Ca2+/Mg2+), as well as their significant role in governing nanoparticle stability in aqueous environments, it is of great importance to understand how the molecular weight (MW)-dependent physicochemical properties of NOM impact fundamental transportation processes like the aggregation of engineered nanoparticles (ENPs) in the presence of Na+/Ca2+/Mg2+. Here, we report on the aggregation behavior of a model ENP, fullerene nanoparticles (nC60) in the presence of five MW fractions of Suwannee River NOM (Mf-SRNOMs, separated by ultrafiltration techniques) and three electrolytes (NaCl, CaCl2 and MgCl2). We found that in all NaCl treatments and low concentration CaCl2/MgCl2 treatments, the enhancement of nC60 stability positively correlated with the MW of Mf-SRNOMs. Whereas, the stability efficiency of identical Mf-SRNOM in different electrolytes followed an order of NaCl > MgCl2 > CaCl2, and the enhanced attachment of nC60-SRNOM associations was observed in high MW Mf-SRNOM (SRNOM>100 kD and SRNOM 30–100 kD) at high concentration CaCl2/MgCl2. Our results indicate that although the high MW NOM with large humic-like material is the key component for stabilizing nC60 in monovalent electrolyte, it could play a reversed role in promoting the attachment of nC60, especially in long term aggregations and at high concentrations of divalent cations. Therefore, a detailed understanding of the effects of heterogeneous NOM on the aggregation of ENPs should be highly valued, and properly assessed against different cation species and concentrations.
科研通智能强力驱动
Strongly Powered by AbleSci AI