Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice

端粒酶 端粒 生物 癌变 DNA损伤 细胞生物学 癌症研究 免疫学 癌症 遗传学 DNA 基因
作者
Mariela Jaskelioff,Florian L. Müller,Ji-Hye Paik,Emily Thomas,Shan Jiang,Andrew C. Adams,Ergün Sahin,Maria Kost‐Alimova,Alexei Protopopov,Juan Cadiñanos,James W. Horner,Eleftheria Maratos–Flier,Ronald A. DePinho
出处
期刊:Nature [Springer Nature]
卷期号:469 (7328): 102-106 被引量:774
标识
DOI:10.1038/nature09603
摘要

Loss of telomeres, the protective tips on the ends of chromosomes, causes tissue atrophy and other damage. A growing body of evidence points to telomere defects as a driver of age-associated organ decline and disease. Ronald DePinho and colleagues now show that reactivation of endogenous telomerase in mice extends telomeres, reduces DNA damage signalling, allows resumption of proliferation in quiescent cultures and eliminates degenerative phenotypes in many organs including the brain. Regenerative strategies that restore telomerase integrity may therefore be capable of slowing, halting or reversing age-related tissue degeneration — although as the authors point out, prolonged telomerase reactivation or applications in later life could provoke carcinogenesis. Here it is shown that reactivation of endogenous telomerase activity in mice extends telomeres, reduces DNA damage signalling, allows resumption of proliferation in quiescent cultures, and eliminates degenerative phenotypes across multiple organs including testes, spleens and intestines. Accumulating evidence implicating telomere damage as a driver of age-associated organ decline and disease and the reversal of damage observed here support the development of regenerative strategies designed to restore telomere integrity. An ageing world population has fuelled interest in regenerative remedies that may stem declining organ function and maintain fitness. Unanswered is whether elimination of intrinsic instigators driving age-associated degeneration can reverse, as opposed to simply arrest, various afflictions of the aged. Such instigators include progressively damaged genomes. Telomerase-deficient mice have served as a model system to study the adverse cellular and organismal consequences of wide-spread endogenous DNA damage signalling activation in vivo1. Telomere loss and uncapping provokes progressive tissue atrophy, stem cell depletion, organ system failure and impaired tissue injury responses1. Here, we sought to determine whether entrenched multi-system degeneration in adult mice with severe telomere dysfunction can be halted or possibly reversed by reactivation of endogenous telomerase activity. To this end, we engineered a knock-in allele encoding a 4-hydroxytamoxifen (4-OHT)-inducible telomerase reverse transcriptase-oestrogen receptor (TERT-ER) under transcriptional control of the endogenous TERT promoter. Homozygous TERT-ER mice have short dysfunctional telomeres and sustain increased DNA damage signalling and classical degenerative phenotypes upon successive generational matings and advancing age. Telomerase reactivation in such late generation TERT-ER mice extends telomeres, reduces DNA damage signalling and associated cellular checkpoint responses, allows resumption of proliferation in quiescent cultures, and eliminates degenerative phenotypes across multiple organs including testes, spleens and intestines. Notably, somatic telomerase reactivation reversed neurodegeneration with restoration of proliferating Sox2+ neural progenitors, Dcx+ newborn neurons, and Olig2+ oligodendrocyte populations. Consistent with the integral role of subventricular zone neural progenitors in generation and maintenance of olfactory bulb interneurons2, this wave of telomerase-dependent neurogenesis resulted in alleviation of hyposmia and recovery of innate olfactory avoidance responses. Accumulating evidence implicating telomere damage as a driver of age-associated organ decline and disease risk1,3 and the marked reversal of systemic degenerative phenotypes in adult mice observed here support the development of regenerative strategies designed to restore telomere integrity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卫子善发布了新的文献求助10
刚刚
刚刚
SciGPT应助黑黑采纳,获得10
1秒前
摆烂小子完成签到,获得积分10
1秒前
乐观的涵柳完成签到 ,获得积分10
1秒前
1秒前
清爽身影发布了新的文献求助10
1秒前
Limanman完成签到,获得积分10
1秒前
忧忧完成签到,获得积分20
2秒前
醉熏的夏寒应助容乐乐采纳,获得10
2秒前
2秒前
2秒前
隐形曼青应助送外卖了采纳,获得10
2秒前
JamesPei应助送外卖了采纳,获得10
3秒前
3秒前
共享精神应助送外卖了采纳,获得10
3秒前
小蘑菇应助送外卖了采纳,获得10
3秒前
orixero应助送外卖了采纳,获得10
3秒前
深情安青应助送外卖了采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
小二郎应助送外卖了采纳,获得10
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
nana应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得30
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
3秒前
爆米花应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
4秒前
小蘑菇应助迷途的羔羊采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
F远Y山F应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488284
求助须知:如何正确求助?哪些是违规求助? 3076029
关于积分的说明 9143413
捐赠科研通 2768356
什么是DOI,文献DOI怎么找? 1519139
邀请新用户注册赠送积分活动 703551
科研通“疑难数据库(出版商)”最低求助积分说明 701922