细胞凋亡
激酶
细胞生物学
化学
氧化应激
半胱氨酸蛋白酶3
成骨细胞
细胞色素c
c-jun公司
半胱氨酸蛋白酶
程序性细胞死亡
生物化学
生物
体外
转录因子
基因
作者
Wen‐Hsiung Chan,Hsin‐Jung Wu,Nion‐Heng Shiao
摘要
Abstract Methylglyoxal (MG) is a reactive dicarbonyl compound endogenously produced mainly from glycolytic intermediates. MG is cytotoxic through induction of cell death, and elevated MG levels in diabetes patients are believed to contribute to diabetic complications. In this report, we show for the first time that MG treatment triggers apoptosis in human osteoblasts. We further show that MG‐induced apoptosis of osteoblasts involves specific apoptotic biochemical changes, including oxidative stress, c‐Jun N‐terminal kinase (JNK) activation, mitochondrial membrane potential changes, cytochrome C release, increased Bax/Bcl‐2 protein ratios, and activation of caspases (caspase‐9, caspase‐3) and p21‐activated protein kinase 2 (PAK2). Treatment of osteoblasts with SP600125, a JNK‐specific inhibitor, led to a reduction in MG‐induced apoptosis and decreased activation of caspase‐3 and PAK2, indicating that JNK activity is upstream of these events. Experiments using anti‐sense oligonucleotides against PAK2 further showed that PAK2 activation is required for MG‐induced apoptosis in osteoblasts. Interestingly, we also found that MG treatment triggered nuclear translocation of NF‐κB, although the precise regulatory role of NF‐κB activation in MG‐induced apoptosis remains unclear. Lastly, we examined the effect of MG on osteoblasts in vivo, and found that exposure of rats to dietary water containing 100–200 µM MG caused bone mineral density (BMD) loss. Collectively, these results reveal for the first time that MG treatment triggers apoptosis in osteoblasts via specific apoptotic signaling, and causes BMD loss in vivo. J. Cell. Biochem. 100: 1056–1069, 2007. © 2006 Wiley‐Liss, Inc.
科研通智能强力驱动
Strongly Powered by AbleSci AI