Potential prediction of the microbial spoilage of beef using spatially resolved hyperspectral scattering profiles

高光谱成像 食物腐败 肉类腐败 食品科学 生物系统 化学 遥感 生物 细菌 遗传学 地质学
作者
Yankun Peng,Jing Zhang,Wei Wang,Yongyu Li,Wu Jian,Hui Huang,Xiaodong Gao,Weikang Jiang
出处
期刊:Journal of Food Engineering [Elsevier]
卷期号:102 (2): 163-169 被引量:113
标识
DOI:10.1016/j.jfoodeng.2010.08.014
摘要

Spoilage in beef is the result of decomposition and the formation of metabolites caused by the growth and enzymatic activity of microorganisms. There is still no technology for the rapid, accurate and non-destructive detection of bacterially spoiled or contaminated beef. In this study, hyperspectral imaging technique was exploited to measure biochemical changes within the fresh beef. Fresh beef rump steaks were purchased from a commercial plant, and left to spoil in refrigerator at 8 °C. Every 12 h, hyperspectral scattering profiles over the spectral region between 400 and 1100 nm were collected directly from the sample surface in reflection pattern in order to develop an optimal model for prediction of the beef spoilage, in parallel the total viable count (TVC) per gram of beef were obtained by classical microbiological plating methods. The spectral scattering profiles at individual wavelengths were fitted accurately by a two-parameter Lorentzian distribution function. TVC prediction models were developed, using multi-linear regression, on relating individual Lorentzian parameters and their combinations at different wavelengths to log10(TVC) value. The best predictions were obtained with r2 = 0.95 and SEP = 0.30 for log10(TVC). The research demonstrated that hyperspectral imaging technique showed potential for real-time and non-destructive detection of bacterial spoilage in beef.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容冰夏完成签到,获得积分10
3秒前
煎蛋完成签到,获得积分10
3秒前
4秒前
4秒前
大个应助xc8418采纳,获得10
6秒前
闪耀星星完成签到,获得积分20
8秒前
稳重元彤完成签到,获得积分20
8秒前
霹雳鲨鱼完成签到,获得积分10
8秒前
Orange应助jiuyuan采纳,获得10
8秒前
9秒前
芒果与鱼发布了新的文献求助10
10秒前
11秒前
左代灵发布了新的文献求助10
11秒前
朴素夜梦完成签到,获得积分10
13秒前
文艺卿完成签到,获得积分10
14秒前
15秒前
LIYY发布了新的文献求助10
15秒前
无花果应助superbeier采纳,获得10
15秒前
15秒前
16秒前
烂漫的猕猴桃完成签到,获得积分20
17秒前
19秒前
wsh发布了新的文献求助10
20秒前
20秒前
范小西发布了新的文献求助10
20秒前
依依完成签到 ,获得积分10
20秒前
Ava应助佳佳采纳,获得10
22秒前
22秒前
22秒前
22秒前
夕阳西下发布了新的文献求助10
23秒前
香蕉觅云应助wonhui采纳,获得10
25秒前
25秒前
111版发布了新的文献求助10
26秒前
干净土豆发布了新的文献求助10
27秒前
aldehyde应助77采纳,获得10
28秒前
29秒前
29秒前
Wonder完成签到,获得积分10
32秒前
lee完成签到,获得积分10
32秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149493
求助须知:如何正确求助?哪些是违规求助? 2800565
关于积分的说明 7840531
捐赠科研通 2458065
什么是DOI,文献DOI怎么找? 1308242
科研通“疑难数据库(出版商)”最低求助积分说明 628460
版权声明 601706