Potential prediction of the microbial spoilage of beef using spatially resolved hyperspectral scattering profiles

高光谱成像 食物腐败 肉类腐败 食品科学 生物系统 化学 遥感 生物 细菌 遗传学 地质学
作者
Yankun Peng,Jing Zhang,Wei Wang,Yongyu Li,Jianhu Wu,Hui Huang,Xiaodong Gao,Weikang Jiang
出处
期刊:Journal of Food Engineering [Elsevier]
卷期号:102 (2): 163-169 被引量:119
标识
DOI:10.1016/j.jfoodeng.2010.08.014
摘要

Spoilage in beef is the result of decomposition and the formation of metabolites caused by the growth and enzymatic activity of microorganisms. There is still no technology for the rapid, accurate and non-destructive detection of bacterially spoiled or contaminated beef. In this study, hyperspectral imaging technique was exploited to measure biochemical changes within the fresh beef. Fresh beef rump steaks were purchased from a commercial plant, and left to spoil in refrigerator at 8 °C. Every 12 h, hyperspectral scattering profiles over the spectral region between 400 and 1100 nm were collected directly from the sample surface in reflection pattern in order to develop an optimal model for prediction of the beef spoilage, in parallel the total viable count (TVC) per gram of beef were obtained by classical microbiological plating methods. The spectral scattering profiles at individual wavelengths were fitted accurately by a two-parameter Lorentzian distribution function. TVC prediction models were developed, using multi-linear regression, on relating individual Lorentzian parameters and their combinations at different wavelengths to log10(TVC) value. The best predictions were obtained with r2 = 0.95 and SEP = 0.30 for log10(TVC). The research demonstrated that hyperspectral imaging technique showed potential for real-time and non-destructive detection of bacterial spoilage in beef.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
killer10831完成签到,获得积分10
刚刚
1秒前
1秒前
刘晓璐完成签到,获得积分10
1秒前
kvning完成签到,获得积分10
1秒前
马楼发布了新的文献求助10
1秒前
段仁杰完成签到,获得积分10
2秒前
我爱学习完成签到,获得积分20
2秒前
Peter发布了新的文献求助10
2秒前
2秒前
Anderson123完成签到,获得积分0
2秒前
ZHOUCHENG完成签到,获得积分0
3秒前
shinian发布了新的文献求助10
3秒前
年轻的小可完成签到 ,获得积分10
3秒前
gabee完成签到 ,获得积分10
3秒前
Anderson732完成签到,获得积分10
3秒前
科目三应助霸气若男采纳,获得10
3秒前
落寞诗桃完成签到,获得积分10
3秒前
酷炫半青完成签到,获得积分20
3秒前
阿黎完成签到,获得积分10
4秒前
MZhang发布了新的文献求助10
5秒前
5秒前
silence完成签到,获得积分10
5秒前
WANGYU发布了新的文献求助10
5秒前
ggp发布了新的文献求助50
5秒前
monthli完成签到,获得积分10
5秒前
冷静柠檬关注了科研通微信公众号
6秒前
DZH2RXM完成签到,获得积分20
6秒前
ARES2发布了新的文献求助10
6秒前
慕青应助苜蓿采纳,获得10
6秒前
6秒前
ATREE完成签到,获得积分10
7秒前
7秒前
7秒前
风禾尽起发布了新的文献求助10
7秒前
白羊应助1101592875采纳,获得50
8秒前
梦想是拿八个博士学位完成签到,获得积分10
8秒前
KC完成签到 ,获得积分10
8秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652297
求助须知:如何正确求助?哪些是违规求助? 4787231
关于积分的说明 15059377
捐赠科研通 4810953
什么是DOI,文献DOI怎么找? 2573500
邀请新用户注册赠送积分活动 1529327
关于科研通互助平台的介绍 1488227