卡尔曼滤波器
快速卡尔曼滤波
不变扩展卡尔曼滤波器
扩展卡尔曼滤波器
线性化
贝叶斯概率
高斯分布
随机变量
集合卡尔曼滤波器
α-β滤光片
计算机科学
无味变换
过滤问题
控制理论(社会学)
算法
状态变量
递归贝叶斯估计
数学
人工智能
移动视界估计
统计
非线性系统
物理
热力学
量子力学
控制(管理)
作者
Jan Mochnac,Stanislav Marchevský,Pavol Kocan
标识
DOI:10.1109/radioelek.2009.5158765
摘要
Bayesian filters provide a statistical tool for dealing with measurement uncertainty. Bayesian filters estimate a state of dynamic system from noisy observations. These filters represent the state by random variable and in each time step probability distribution over random variable represents the uncertainty. If estimate is needed with every new measurement, it is suitable to use recursive filter. Unfortunately optimal Bayesian solution exists in a restrictive set of cases, e.g. Kalman filters which assume Gaussian PDF or we need to use suboptimal solution, e.g. extended Kalman filters which use local linearization to approximate PDF to be Gaussian.
科研通智能强力驱动
Strongly Powered by AbleSci AI