A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment)

骨髓纤维化 医学 预测模型 鲁索利替尼 内科学 肿瘤科 血液肿瘤 生存分析 真性红细胞增多症 国际预后积分系统 总体生存率 骨髓 骨髓增生异常综合症 癌症
作者
Francesco Passamonti,Francisco Cervantes,Alessandro M. Vannucchi,Enrica Morra,Elisa Rumi,Arturo Pereira,Paola Guglielmelli,Ester Pungolino,Marianna Caramella,Margherita Maffioli,Cristiana Pascutto,Mario Lazzarino,Mario Cazzola,Ayalew Tefferi
出处
期刊:Blood [American Society of Hematology]
卷期号:115 (9): 1703-1708 被引量:884
标识
DOI:10.1182/blood-2009-09-245837
摘要

Age older than 65 years, hemoglobin level lower than 100 g/L (10 g/dL), white blood cell count greater than 25 x 10(9)/L, peripheral blood blasts 1% or higher, and constitutional symptoms have been shown to predict poor survival in primary myelofibrosis (PMF) at diagnosis. To investigate whether the acquisition of these factors during follow-up predicts survival, we studied 525 PMF patients regularly followed. All 5 variables had a significant impact on survival when analyzed as time-dependent covariates in a multivariate Cox proportional hazard model and were included in 2 separate models, 1 for all patients (Dynamic International Prognostic Scoring System [DIPSS]) and 1 for patients younger than 65 years (age-adjusted DIPSS). Risk factors were assigned score values based on hazard ratios (HRs). Risk categories were low, intermediate-1, intermediate-2, and high in both models. Survival was estimated by the HR. When shifting to the next risk category, the HR was 4.13 for low risk, 4.61 for intermediate-1, and 2.54 for intermediate-2 according to DIPSS; 3.97 for low risk, 2.84 for intermediate-1, and 1.81 for intermediate-2 according to the age-adjusted DIPSS. The novelty of these models is the prognostic assessment of patients with PMF anytime during their clinical course, which may be useful for treatment decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助爱学习采纳,获得10
刚刚
刚刚
wary发布了新的文献求助10
刚刚
橘子完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
了了发布了新的文献求助10
3秒前
3秒前
ZQY完成签到 ,获得积分10
3秒前
斯文败类应助正直亦旋采纳,获得10
5秒前
科研通AI5应助jijahui采纳,获得80
6秒前
Jenny应助背后的诺言采纳,获得10
6秒前
木木完成签到,获得积分10
6秒前
赤邪发布了新的文献求助10
6秒前
6秒前
keen完成签到 ,获得积分10
6秒前
et完成签到,获得积分10
7秒前
桂魄完成签到,获得积分10
7秒前
7秒前
8秒前
wang发布了新的文献求助200
9秒前
9秒前
9秒前
英姑应助snowdrift采纳,获得10
9秒前
9秒前
9秒前
jy完成签到 ,获得积分10
9秒前
NexusExplorer应助立马毕业采纳,获得10
10秒前
在水一方应助123采纳,获得10
11秒前
科目三应助白华苍松采纳,获得10
12秒前
通~发布了新的文献求助10
12秒前
CipherSage应助千幻采纳,获得10
12秒前
12秒前
dddddd完成签到,获得积分10
12秒前
桂魄发布了新的文献求助10
12秒前
年轻的咖啡豆完成签到,获得积分20
13秒前
13秒前
绿洲发布了新的文献求助10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762