亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimal Deconvolution of Transcriptional Profiling Data Using Quadratic Programming with Application to Complex Clinical Blood Samples

反褶积 计算生物学 仿形(计算机编程) 人口 基因表达谱 计算机科学 潜变量 生物 生物信息学 数据挖掘 生物系统 统计 数学 算法 基因表达 人工智能 医学 基因 遗传学 环境卫生 操作系统
作者
Ting Gong,Nicole Hartmann,Isaac S. Kohane,Volker Brinkmann,Frank Staedtler,Martin Letzkus,Sandrine Bongiovanni,Joseph D. Szustakowski
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:6 (11): e27156-e27156 被引量:151
标识
DOI:10.1371/journal.pone.0027156
摘要

Large-scale molecular profiling technologies have assisted the identification of disease biomarkers and facilitated the basic understanding of cellular processes. However, samples collected from human subjects in clinical trials possess a level of complexity, arising from multiple cell types, that can obfuscate the analysis of data derived from them. Failure to identify, quantify, and incorporate sources of heterogeneity into an analysis can have widespread and detrimental effects on subsequent statistical studies. We describe an approach that builds upon a linear latent variable model, in which expression levels from mixed cell populations are modeled as the weighted average of expression from different cell types. We solve these equations using quadratic programming, which efficiently identifies the globally optimal solution while preserving non-negativity of the fraction of the cells. We applied our method to various existing platforms to estimate proportions of different pure cell or tissue types and gene expression profilings of distinct phenotypes, with a focus on complex samples collected in clinical trials. We tested our methods on several well controlled benchmark data sets with known mixing fractions of pure cell or tissue types and mRNA expression profiling data from samples collected in a clinical trial. Accurate agreement between predicted and actual mixing fractions was observed. In addition, our method was able to predict mixing fractions for more than ten species of circulating cells and to provide accurate estimates for relatively rare cell types (<10% total population). Furthermore, accurate changes in leukocyte trafficking associated with Fingolomid (FTY720) treatment were identified that were consistent with previous results generated by both cell counts and flow cytometry. These data suggest that our method can solve one of the open questions regarding the analysis of complex transcriptional data: namely, how to identify the optimal mixing fractions in a given experiment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助Sherry采纳,获得10
1秒前
量子星尘发布了新的文献求助10
3秒前
深情安青应助蓝灵采纳,获得10
12秒前
13秒前
krajicek发布了新的文献求助10
18秒前
美好莹芝完成签到,获得积分10
19秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
22秒前
思源应助科研通管家采纳,获得30
22秒前
Rondab应助科研通管家采纳,获得30
22秒前
Rondab应助科研通管家采纳,获得30
22秒前
张祖成完成签到 ,获得积分10
30秒前
许三问完成签到 ,获得积分0
39秒前
Apei完成签到 ,获得积分10
47秒前
悠明夜月完成签到 ,获得积分10
1分钟前
1分钟前
Nuyoah发布了新的文献求助30
1分钟前
1分钟前
1分钟前
Sherry完成签到,获得积分10
1分钟前
xx发布了新的文献求助10
1分钟前
哈哈哈完成签到,获得积分10
1分钟前
Sherry发布了新的文献求助10
1分钟前
三岁完成签到 ,获得积分10
1分钟前
SciGPT应助VVV采纳,获得10
1分钟前
1分钟前
HY发布了新的文献求助10
1分钟前
今天也是好天气完成签到,获得积分10
1分钟前
1分钟前
sxy发布了新的文献求助10
1分钟前
Lee2000完成签到,获得积分10
1分钟前
落落洛栖完成签到 ,获得积分10
1分钟前
无花果应助祈雪落采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
牛奶拌可乐完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
yeah发布了新的文献求助10
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960053
求助须知:如何正确求助?哪些是违规求助? 3506261
关于积分的说明 11128492
捐赠科研通 3238225
什么是DOI,文献DOI怎么找? 1789595
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056