亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimal Deconvolution of Transcriptional Profiling Data Using Quadratic Programming with Application to Complex Clinical Blood Samples

反褶积 计算生物学 仿形(计算机编程) 人口 基因表达谱 计算机科学 潜变量 生物 生物信息学 数据挖掘 生物系统 统计 数学 算法 基因表达 人工智能 医学 基因 遗传学 环境卫生 操作系统
作者
Ting Gong,Nicole Hartmann,Isaac S. Kohane,Volker Brinkmann,Frank Staedtler,Martin Letzkus,Sandrine Bongiovanni,Joseph D. Szustakowski
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:6 (11): e27156-e27156 被引量:151
标识
DOI:10.1371/journal.pone.0027156
摘要

Large-scale molecular profiling technologies have assisted the identification of disease biomarkers and facilitated the basic understanding of cellular processes. However, samples collected from human subjects in clinical trials possess a level of complexity, arising from multiple cell types, that can obfuscate the analysis of data derived from them. Failure to identify, quantify, and incorporate sources of heterogeneity into an analysis can have widespread and detrimental effects on subsequent statistical studies. We describe an approach that builds upon a linear latent variable model, in which expression levels from mixed cell populations are modeled as the weighted average of expression from different cell types. We solve these equations using quadratic programming, which efficiently identifies the globally optimal solution while preserving non-negativity of the fraction of the cells. We applied our method to various existing platforms to estimate proportions of different pure cell or tissue types and gene expression profilings of distinct phenotypes, with a focus on complex samples collected in clinical trials. We tested our methods on several well controlled benchmark data sets with known mixing fractions of pure cell or tissue types and mRNA expression profiling data from samples collected in a clinical trial. Accurate agreement between predicted and actual mixing fractions was observed. In addition, our method was able to predict mixing fractions for more than ten species of circulating cells and to provide accurate estimates for relatively rare cell types (<10% total population). Furthermore, accurate changes in leukocyte trafficking associated with Fingolomid (FTY720) treatment were identified that were consistent with previous results generated by both cell counts and flow cytometry. These data suggest that our method can solve one of the open questions regarding the analysis of complex transcriptional data: namely, how to identify the optimal mixing fractions in a given experiment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuliu发布了新的文献求助10
8秒前
可爱的函函应助菠萝采纳,获得10
12秒前
余可馨发布了新的文献求助10
13秒前
16秒前
20秒前
科研通AI6应助余可馨采纳,获得10
22秒前
23秒前
菠萝发布了新的文献求助10
24秒前
UpLiu完成签到 ,获得积分10
37秒前
42秒前
51秒前
Jasper应助维颖采纳,获得10
54秒前
小花小宝和阿飞完成签到 ,获得积分10
59秒前
吴端完成签到,获得积分10
1分钟前
贪玩老姆完成签到 ,获得积分10
1分钟前
tj完成签到 ,获得积分10
1分钟前
1分钟前
阳佟水蓉完成签到,获得积分10
1分钟前
1分钟前
所所应助zhvjdb采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
维颖发布了新的文献求助10
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
1分钟前
1分钟前
1分钟前
浮浮世世发布了新的文献求助10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
Cast_Lappland发布了新的文献求助10
1分钟前
2分钟前
Cast_Lappland完成签到,获得积分10
2分钟前
早川完成签到,获得积分10
2分钟前
2分钟前
科研通AI2S应助魏欣娜采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482307
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388883
捐赠科研通 4512205
什么是DOI,文献DOI怎么找? 2472753
邀请新用户注册赠送积分活动 1459020
关于科研通互助平台的介绍 1432430