An algorithm for thorough background subtraction from high-resolution LC/MS data: application to the detection of troglitazone metabolites in rat plasma, bile, and urine

分析物 代谢物 曲格列酮 化学 色谱法 算法 背景减法 质谱法 体内 生物分析 人工智能 计算机科学 生物化学 生物 基因 过氧化物酶体 生物技术 像素
作者
Haiying Zhang,Li Ma,Kan He,Mingshe Zhu
出处
期刊:Journal of Mass Spectrometry [Wiley]
卷期号:43 (9): 1191-1200 被引量:65
标识
DOI:10.1002/jms.1432
摘要

Interferences from biological matrices remain a major challenge to the in vivo detection of drug metabolites. For the last few decades, predicted metabolite masses and fragmentation patterns have been employed to aid in the detection of drug metabolites in liquid chromatography/mass spectrometry (LC/MS) data. Here we report the application of an accurate mass-based background-subtraction approach for comprehensive detection of metabolites formed in vivo using troglitazone as an example. A novel algorithm was applied to check all ions in the spectra of control scans within a specified time window around an analyte scan for potential background subtraction from that analyte spectrum. In this way, chromatographic fluctuations between control and analyte samples were dealt with, and background and matrix-related signals could be effectively subtracted from the data of the analyte sample. Using this algorithm with a+/-1.0 min control scan time window, a+/-10 ppm mass error tolerance, and respective predose samples as controls, troglitazone metabolites were reliably identified in rat plasma and bile samples. Identified metabolites included those reported in the literature as well as some that had not previously been reported, including a novel sulfate conjugate in bile. In combination with mass defect filtering, this algorithm also allowed for identification of troglitazone metabolites in rat urine samples. With a generic data acquisition method and a simple algorithm that requires no presumptions of metabolite masses or fragmentation patterns, this high-resolution LC/MS-based background-subtraction approach provides an efficient alternative for comprehensive metabolite identification in complex biological matrices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
axi发布了新的文献求助10
1秒前
CCC发布了新的文献求助10
1秒前
大个应助张玉雪采纳,获得10
1秒前
大个应助sabery采纳,获得10
1秒前
muttcy完成签到,获得积分10
2秒前
科研通AI6应助米白采纳,获得30
2秒前
3秒前
尔雅完成签到,获得积分10
4秒前
4秒前
vegetable完成签到,获得积分10
4秒前
5秒前
矮小的惜天完成签到,获得积分10
5秒前
大模型应助同城代打采纳,获得10
5秒前
虚幻小凡完成签到,获得积分10
5秒前
6秒前
陈柚瑾发布了新的文献求助10
7秒前
SciGPT应助憨憨芸采纳,获得10
8秒前
CCC完成签到,获得积分10
8秒前
闪闪盼兰发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
没事哒发布了新的文献求助10
10秒前
科研通AI5应助xiaozhou采纳,获得10
10秒前
科研通AI5应助xiaoliu采纳,获得10
11秒前
想要毕业完成签到,获得积分10
13秒前
刚睡着就天亮完成签到 ,获得积分10
13秒前
14秒前
唐泽雪穗应助CCC采纳,获得10
14秒前
今后应助aka鱼鱼鱼采纳,获得10
15秒前
兴奋念真完成签到,获得积分20
16秒前
sabery发布了新的文献求助10
16秒前
天马行空完成签到,获得积分10
17秒前
同城代打发布了新的文献求助10
17秒前
lily完成签到,获得积分10
17秒前
SONGYEZI完成签到,获得积分0
21秒前
张玉雪发布了新的文献求助10
21秒前
Jenkin完成签到,获得积分10
22秒前
同城代打完成签到,获得积分10
22秒前
时间尘埃完成签到,获得积分10
23秒前
柒z完成签到,获得积分10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5056591
求助须知:如何正确求助?哪些是违规求助? 4282081
关于积分的说明 13344888
捐赠科研通 4099030
什么是DOI,文献DOI怎么找? 2243907
邀请新用户注册赠送积分活动 1250063
关于科研通互助平台的介绍 1180451