An algorithm for thorough background subtraction from high-resolution LC/MS data: application to the detection of troglitazone metabolites in rat plasma, bile, and urine

分析物 代谢物 曲格列酮 化学 色谱法 算法 背景减法 质谱法 体内 生物分析 人工智能 计算机科学 生物化学 生物 基因 过氧化物酶体 生物技术 像素
作者
Haiying Zhang,Li Ma,Kan He,Mingshe Zhu
出处
期刊:Journal of Mass Spectrometry [Wiley]
卷期号:43 (9): 1191-1200 被引量:65
标识
DOI:10.1002/jms.1432
摘要

Interferences from biological matrices remain a major challenge to the in vivo detection of drug metabolites. For the last few decades, predicted metabolite masses and fragmentation patterns have been employed to aid in the detection of drug metabolites in liquid chromatography/mass spectrometry (LC/MS) data. Here we report the application of an accurate mass-based background-subtraction approach for comprehensive detection of metabolites formed in vivo using troglitazone as an example. A novel algorithm was applied to check all ions in the spectra of control scans within a specified time window around an analyte scan for potential background subtraction from that analyte spectrum. In this way, chromatographic fluctuations between control and analyte samples were dealt with, and background and matrix-related signals could be effectively subtracted from the data of the analyte sample. Using this algorithm with a+/-1.0 min control scan time window, a+/-10 ppm mass error tolerance, and respective predose samples as controls, troglitazone metabolites were reliably identified in rat plasma and bile samples. Identified metabolites included those reported in the literature as well as some that had not previously been reported, including a novel sulfate conjugate in bile. In combination with mass defect filtering, this algorithm also allowed for identification of troglitazone metabolites in rat urine samples. With a generic data acquisition method and a simple algorithm that requires no presumptions of metabolite masses or fragmentation patterns, this high-resolution LC/MS-based background-subtraction approach provides an efficient alternative for comprehensive metabolite identification in complex biological matrices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田李君完成签到,获得积分10
1秒前
自行输入昵称完成签到 ,获得积分10
2秒前
脑洞疼应助纳姆哒采纳,获得10
3秒前
4秒前
4秒前
斯文败类应助晓兴兴采纳,获得10
4秒前
uulli完成签到,获得积分10
5秒前
淡淡宛完成签到 ,获得积分0
5秒前
ding5完成签到,获得积分10
6秒前
黑苹果发布了新的文献求助10
9秒前
脑洞疼应助无言采纳,获得10
9秒前
10秒前
时尚的傲旋完成签到 ,获得积分10
10秒前
11秒前
QQ完成签到 ,获得积分10
11秒前
江幻天完成签到,获得积分10
13秒前
HH发布了新的文献求助10
14秒前
黑苹果完成签到,获得积分10
15秒前
李浩完成签到,获得积分10
15秒前
呆呆熊完成签到,获得积分10
16秒前
17秒前
晓兴兴发布了新的文献求助10
17秒前
18秒前
Akim应助呆呆熊采纳,获得10
19秒前
19秒前
19秒前
wheat完成签到,获得积分10
20秒前
烟花应助尉迟秋采纳,获得10
21秒前
BlingBling完成签到,获得积分10
21秒前
程程完成签到 ,获得积分10
21秒前
xiaohong完成签到,获得积分10
22秒前
22秒前
23秒前
ZDddd发布了新的文献求助10
23秒前
GT发布了新的文献求助30
23秒前
23秒前
佳佳应助HH采纳,获得10
24秒前
猪猪hero发布了新的文献求助10
24秒前
存慎完成签到 ,获得积分10
25秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966147
求助须知:如何正确求助?哪些是违规求助? 3511567
关于积分的说明 11158912
捐赠科研通 3246169
什么是DOI,文献DOI怎么找? 1793309
邀请新用户注册赠送积分活动 874321
科研通“疑难数据库(出版商)”最低求助积分说明 804343