An algorithm for thorough background subtraction from high-resolution LC/MS data: application to the detection of troglitazone metabolites in rat plasma, bile, and urine

分析物 代谢物 曲格列酮 化学 色谱法 算法 背景减法 质谱法 体内 生物分析 人工智能 计算机科学 生物化学 生物 基因 过氧化物酶体 生物技术 像素
作者
Haiying Zhang,Li Ma,Kan He,Mingshe Zhu
出处
期刊:Journal of Mass Spectrometry [Wiley]
卷期号:43 (9): 1191-1200 被引量:65
标识
DOI:10.1002/jms.1432
摘要

Interferences from biological matrices remain a major challenge to the in vivo detection of drug metabolites. For the last few decades, predicted metabolite masses and fragmentation patterns have been employed to aid in the detection of drug metabolites in liquid chromatography/mass spectrometry (LC/MS) data. Here we report the application of an accurate mass-based background-subtraction approach for comprehensive detection of metabolites formed in vivo using troglitazone as an example. A novel algorithm was applied to check all ions in the spectra of control scans within a specified time window around an analyte scan for potential background subtraction from that analyte spectrum. In this way, chromatographic fluctuations between control and analyte samples were dealt with, and background and matrix-related signals could be effectively subtracted from the data of the analyte sample. Using this algorithm with a+/-1.0 min control scan time window, a+/-10 ppm mass error tolerance, and respective predose samples as controls, troglitazone metabolites were reliably identified in rat plasma and bile samples. Identified metabolites included those reported in the literature as well as some that had not previously been reported, including a novel sulfate conjugate in bile. In combination with mass defect filtering, this algorithm also allowed for identification of troglitazone metabolites in rat urine samples. With a generic data acquisition method and a simple algorithm that requires no presumptions of metabolite masses or fragmentation patterns, this high-resolution LC/MS-based background-subtraction approach provides an efficient alternative for comprehensive metabolite identification in complex biological matrices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
共享精神应助sy采纳,获得10
3秒前
3秒前
受伤的冰海完成签到 ,获得积分10
6秒前
无限大人发布了新的文献求助10
7秒前
bofu发布了新的文献求助10
8秒前
李健的小迷弟应助zhangsudi采纳,获得30
9秒前
9秒前
11秒前
尛瞐慶成完成签到,获得积分10
11秒前
Autken完成签到,获得积分10
12秒前
12秒前
Amor发布了新的文献求助10
14秒前
李健的小迷弟应助康舟采纳,获得10
15秒前
丘比特应助贪玩绮南采纳,获得10
15秒前
侯悦茹完成签到,获得积分10
15秒前
bofu发布了新的文献求助10
16秒前
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
SciGPT应助科研通管家采纳,获得10
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
凌风完成签到,获得积分10
17秒前
桐桐应助科研通管家采纳,获得10
17秒前
CipherSage应助科研通管家采纳,获得30
17秒前
17秒前
17秒前
slim完成签到,获得积分10
17秒前
whatever应助tgoutgou采纳,获得20
18秒前
sy发布了新的文献求助10
18秒前
匆匆完成签到 ,获得积分10
19秒前
丰富雅容完成签到 ,获得积分10
20秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160995
求助须知:如何正确求助?哪些是违规求助? 2812220
关于积分的说明 7894949
捐赠科研通 2471119
什么是DOI,文献DOI怎么找? 1315906
科研通“疑难数据库(出版商)”最低求助积分说明 631069
版权声明 602086