渗流阈值
渗透(认知心理学)
半径
渗流理论
对称(几何)
物理
粒子(生态学)
材料科学
色散(光学)
球体
航程(航空)
统计物理学
复合材料
量子力学
数学
电导率
电阻率和电导率
几何学
计算机科学
神经科学
地质学
计算机安全
天文
海洋学
生物
作者
A. S. Ioselevich,Alexei A. Kornyshev
出处
期刊:Physical review
日期:2002-01-09
卷期号:65 (2)
被引量:23
标识
DOI:10.1103/physreve.65.021301
摘要
The concept of so-called global symmetry of percolation models is discussed and extended to multicolored models. An integral equation is obtained, which determines the partial percolation probabilities P(a) for sites of color a. This equation is applied to a polydisperse particulate composite: a mixture of conducting (of relative fraction x(m)) and nonconducting spheres with distributions of sizes n(m)(R) and n(i)(R), respectively. We find the probability P(R) for a conducting particle of radius R to belong to the percolation cluster as a function of x(m) and a functional of n(m)(R') and n(i)(R'). The percolation threshold x is shown to decrease with increasing dispersion Delta of particle sizes. A simple law x=1/(3[1+(Delta/4)]) is obtained in the range of moderate dispersions. The theory is applicable also to a mixture of electronic and ionic conductors.
科研通智能强力驱动
Strongly Powered by AbleSci AI