清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Adaptive steganalysis against WOW embedding algorithm

隐写分析技术 隐写术 嵌入 计算机科学 人工智能 图像(数学) 封面(代数) 模式识别(心理学) JPEG格式 算法 点(几何) 计算机视觉 数学 机械工程 几何学 工程类
作者
Weixuan Tang,Haodong Li,Weiqi Luo,Jiwu Huang
标识
DOI:10.1145/2600918.2600935
摘要

WOW (Wavelet Obtained Weights) [5] is one of the advanced steganographic methods in spatial domain, which can adaptively embed secret message into cover image according to textural complexity. Usually, the more complex of an image region, the more pixel values within it would be modified. In such a way, it can achieve good visual quality of the resulting stegos and high security against typical steganalytic detectors. Based on our analysis, however, we point out one of the limitations in the WOW embedding algorithm, namely, it is easy to narrow down those possible modified regions for a given stego image based on the embedding costs used in WOW. If we just extract features from such regions and perform analysis on them, it is expected that the detection performance would be improved compared with that of extracting steganalytic features from the whole image. In this paper, we first proposed an adaptive steganalytic scheme for the WOW method, and use the spatial rich model (SRM) based features [4] to model those possible modified regions in our experiments. The experimental results evaluated on 10,000 images have shown the effectiveness of our scheme. It is also noted that our steganalytic strategy can be combined with other steganalytic features to detect the WOW and/or other adaptive steganographic methods both in the spatial and JPEG domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助孤独幻桃采纳,获得30
27秒前
紫荆完成签到 ,获得积分10
53秒前
方白秋完成签到,获得积分10
1分钟前
孤独幻桃完成签到,获得积分10
2分钟前
3分钟前
Z可发布了新的文献求助10
3分钟前
4分钟前
洒家完成签到 ,获得积分10
5分钟前
SciGPT应助连安阳采纳,获得10
5分钟前
6分钟前
连安阳发布了新的文献求助10
6分钟前
vitamin完成签到 ,获得积分10
6分钟前
耍酷平凡发布了新的文献求助30
6分钟前
无悔完成签到 ,获得积分10
7分钟前
大医仁心完成签到 ,获得积分10
7分钟前
聪明的云完成签到 ,获得积分10
7分钟前
稻子完成签到 ,获得积分10
8分钟前
dinglingling完成签到 ,获得积分10
8分钟前
研友_VZG7GZ应助耍酷平凡采纳,获得10
8分钟前
CHEN完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
Arthur Zhu完成签到,获得积分10
8分钟前
9分钟前
9分钟前
10分钟前
10分钟前
10分钟前
熊猫胖胖WITH超人完成签到,获得积分20
10分钟前
10分钟前
耍酷平凡发布了新的文献求助10
10分钟前
10分钟前
ewxf2001发布了新的文献求助10
11分钟前
11分钟前
花园里的蒜完成签到 ,获得积分0
11分钟前
荔枝发布了新的文献求助20
11分钟前
ewxf2001完成签到,获得积分10
11分钟前
juan完成签到 ,获得积分10
11分钟前
cxwcn完成签到 ,获得积分10
11分钟前
Hiram完成签到,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582561
求助须知:如何正确求助?哪些是违规求助? 4000248
关于积分的说明 12382295
捐赠科研通 3675315
什么是DOI,文献DOI怎么找? 2025775
邀请新用户注册赠送积分活动 1059428
科研通“疑难数据库(出版商)”最低求助积分说明 946108