Adaptive steganalysis against WOW embedding algorithm

隐写分析技术 隐写术 嵌入 计算机科学 人工智能 图像(数学) 封面(代数) 模式识别(心理学) JPEG格式 算法 点(几何) 计算机视觉 数学 几何学 机械工程 工程类
作者
Weixuan Tang,Haodong Li,Weiqi Luo,Jiwu Huang
标识
DOI:10.1145/2600918.2600935
摘要

WOW (Wavelet Obtained Weights) [5] is one of the advanced steganographic methods in spatial domain, which can adaptively embed secret message into cover image according to textural complexity. Usually, the more complex of an image region, the more pixel values within it would be modified. In such a way, it can achieve good visual quality of the resulting stegos and high security against typical steganalytic detectors. Based on our analysis, however, we point out one of the limitations in the WOW embedding algorithm, namely, it is easy to narrow down those possible modified regions for a given stego image based on the embedding costs used in WOW. If we just extract features from such regions and perform analysis on them, it is expected that the detection performance would be improved compared with that of extracting steganalytic features from the whole image. In this paper, we first proposed an adaptive steganalytic scheme for the WOW method, and use the spatial rich model (SRM) based features [4] to model those possible modified regions in our experiments. The experimental results evaluated on 10,000 images have shown the effectiveness of our scheme. It is also noted that our steganalytic strategy can be combined with other steganalytic features to detect the WOW and/or other adaptive steganographic methods both in the spatial and JPEG domains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zzzllove发布了新的文献求助10
1秒前
波波发布了新的文献求助10
2秒前
耶耶耶耶发布了新的文献求助10
2秒前
3秒前
Ava应助漫天采纳,获得10
3秒前
3秒前
3秒前
曹家如完成签到,获得积分10
3秒前
4秒前
奕师完成签到,获得积分10
4秒前
思源应助听话的初之采纳,获得10
4秒前
兰先生发布了新的文献求助10
5秒前
大朋完成签到,获得积分10
5秒前
5秒前
Lucas应助workingwalking采纳,获得10
6秒前
6秒前
芒果完成签到,获得积分10
6秒前
CipherSage应助未来科研大佬采纳,获得10
7秒前
解羽完成签到,获得积分10
7秒前
ekko完成签到,获得积分20
8秒前
8秒前
aloong完成签到,获得积分20
8秒前
9秒前
9秒前
9秒前
汉堡包应助qaqfdmmj采纳,获得10
10秒前
zzzllove完成签到,获得积分10
10秒前
10秒前
可耐的宛丝完成签到,获得积分10
10秒前
幸未晚发布了新的文献求助10
11秒前
12秒前
无极微光应助照相机采纳,获得20
12秒前
12秒前
香蕉诗蕊应助解羽采纳,获得10
12秒前
12秒前
13秒前
nini应助麦麦欧巴采纳,获得10
13秒前
13秒前
13秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615047
求助须知:如何正确求助?哪些是违规求助? 4699915
关于积分的说明 14905878
捐赠科研通 4740995
什么是DOI,文献DOI怎么找? 2547893
邀请新用户注册赠送积分活动 1511680
关于科研通互助平台的介绍 1473726