Adaptive steganalysis against WOW embedding algorithm

隐写分析技术 隐写术 嵌入 计算机科学 人工智能 图像(数学) 封面(代数) 模式识别(心理学) JPEG格式 算法 点(几何) 计算机视觉 数学 几何学 机械工程 工程类
作者
Weixuan Tang,Haodong Li,Weiqi Luo,Jiwu Huang
标识
DOI:10.1145/2600918.2600935
摘要

WOW (Wavelet Obtained Weights) [5] is one of the advanced steganographic methods in spatial domain, which can adaptively embed secret message into cover image according to textural complexity. Usually, the more complex of an image region, the more pixel values within it would be modified. In such a way, it can achieve good visual quality of the resulting stegos and high security against typical steganalytic detectors. Based on our analysis, however, we point out one of the limitations in the WOW embedding algorithm, namely, it is easy to narrow down those possible modified regions for a given stego image based on the embedding costs used in WOW. If we just extract features from such regions and perform analysis on them, it is expected that the detection performance would be improved compared with that of extracting steganalytic features from the whole image. In this paper, we first proposed an adaptive steganalytic scheme for the WOW method, and use the spatial rich model (SRM) based features [4] to model those possible modified regions in our experiments. The experimental results evaluated on 10,000 images have shown the effectiveness of our scheme. It is also noted that our steganalytic strategy can be combined with other steganalytic features to detect the WOW and/or other adaptive steganographic methods both in the spatial and JPEG domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
帅气的酸奶完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
科研通AI2S应助忧郁的寒天采纳,获得10
3秒前
3秒前
5秒前
5秒前
日富一日发布了新的文献求助10
6秒前
miao发布了新的文献求助10
6秒前
庾灭男完成签到,获得积分10
6秒前
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
ccccc应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
脑洞疼应助还单身的玫瑰采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
7秒前
彭于彦祖应助科研通管家采纳,获得30
7秒前
YuuLoon应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
8秒前
大气早晨发布了新的文献求助10
8秒前
绿色植物发布了新的文献求助10
9秒前
犹豫的小之完成签到,获得积分10
9秒前
汉堡包应助落叶无悔采纳,获得10
9秒前
芋泥发布了新的文献求助10
10秒前
几酌应助liubo采纳,获得10
10秒前
10秒前
10秒前
11秒前
YuuLoon完成签到 ,获得积分10
11秒前
ding应助腼腆的绝山采纳,获得10
11秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159180
求助须知:如何正确求助?哪些是违规求助? 2810321
关于积分的说明 7887314
捐赠科研通 2469183
什么是DOI,文献DOI怎么找? 1314687
科研通“疑难数据库(出版商)”最低求助积分说明 630682
版权声明 602012