自愈水凝胶
生物相容性
海藻酸钙
化学
儿茶酚
生物粘附
药物输送
二价
细胞包封
肿胀 的
组织工程
葡萄糖醛酸
化学工程
生物物理学
材料科学
高分子化学
钙
生物医学工程
有机化学
多糖
工程类
生物
医学
作者
Changhyun Lee,Jisoo Shin,Jung Seung Lee,Eunkyoung Byun,Gi-Hyung Ryu,Soong Ho Um,Dong‐Ik Kim,Haeshin Lee,Seung‐Woo Cho
出处
期刊:Biomacromolecules
[American Chemical Society]
日期:2013-05-15
卷期号:14 (6): 2004-2013
被引量:252
摘要
Alginate hydrogels are for various biomedical applications including tissue engineering, cell therapy, and drug delivery. However, it is not easy to control swelling or viscoelastic and biophysical properties of alginate hydrogels prepared by conventional cross-linking methods (ionic interaction using divalent cations). In this study, we describe a bioinspired approach for preparing divalent ion-free alginate hydrogels that exhibit tunable physical and mechanical properties and improved biocompatibility due to the absence of cations in the gel matrices. We conjugated dopamine, a minimalized adhesive motif found in the holdfast pads of mussels, to alginate backbones (alginate-catechol) and the tethered catechols underwent oxidative cross-linking. This resulted in divalent cation-free alginate hydrogels. The swelling ratios and moduli of the alginate-catechol hydrogels are readily tunable, which is difficult to achieve in ionic bond-based alginate hydrogels. Furthermore, alginate-catechol hydrogels enhanced the survival of various human primary cells including stem cells in the three-dimensional gel matrix, indicating that intrinsic cytotoxicity caused by divalent cations becomes negligible when employing catechol oxidation for alginate cross-linking. The inflammatory response in vivo was also significantly attenuated compared to conventional alginate hydrogels with calcium cross-linking. This biomimetic approach for the preparation of alginate hydrogels may provide a novel platform technology to develop tunable, functional, biocompatible, three-dimensional scaffolds for tissue engineering and cell therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI