加权
聚类分析
一般化
计算机科学
计算
CURE数据聚类算法
相关聚类
价值(数学)
模式识别(心理学)
单连锁聚类
数据挖掘
算法
人工智能
数学
机器学习
物理
数学分析
声学
作者
Zengyou He,Xiaofei Xu,Shengchun Deng
标识
DOI:10.1016/j.eswa.2011.06.027
摘要
In this paper, we generalize the k-modes clustering algorithm by weighting attribute value in the dissimilarity computation. Such a generalization generates clusters with stronger intra-similarities, leading to better clustering performance. Experimental results on real life data show that the new k-modes algorithm is superior to the standard k-modes algorithm with respect to clustering accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI