A novel temporal recovery technique to enable cone beam CT perfusion imaging using an interventional C-arm system

灌注 计算机科学 灌注扫描 锥束ct 血流 计算机视觉 工作流程 锥束ct 人工智能 生物医学工程 放射科 计算机断层摄影术 医学 数据库
作者
Jie Tang,Min Xu,Kai Niu,Kevin Royalty,Kari Pulfer,Charles M. Strother,Guang‐Hong Chen
出处
期刊:Proceedings of SPIE 被引量:7
标识
DOI:10.1117/12.2007620
摘要

In the current workflow of ischemic stroke management, it is highly desirable to obtain perfusion information with the C-arm CBCT system in the interventional room. Due to hardware limitations, the data acquisition speed of the current Carm CBCT systems is relatively slow and only 7 time frames are available for a 45 s perfusion study. In this study, a novel temporal recovery method was proposed to recover contrast enhancement curves in C-arm CBCT perfusion studies. The proposed temporal recovery problem is a constrained optimization problem. Two numerical methods were used to solve the proposed problem. The feasibility of proposed temporal recovery method was validated with numerical experiments. Both solvers can achieve a satisfactory solution for the temporal recovery problem, while the result of the Bregman algorithm is more accurate than that from the CG. In vivo animal studies were used to demonstrated the improvement of the proposed method in C-arm CBCT perfusion. A stoked canine model was scanned with both C-arm CBCT and diagnostic CT. Perfusion defects can be clearly indentified from the cerebral blood flow (CBF) map of diagnostic CT perfusion. Without the temporal recovery technique, these defects can hardly be identified from the CBCT CBF map. After applying the proposed temporal recovery method, the CBCT CBF map well correlates with the CBF map from diagnostic CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助富婆阳西采纳,获得20
刚刚
Jasper应助方圆几里采纳,获得10
1秒前
AnnaTian发布了新的文献求助10
2秒前
朴素幼晴发布了新的文献求助10
3秒前
3秒前
糯鱼鱼ovo完成签到 ,获得积分10
4秒前
4秒前
Colossus完成签到,获得积分10
4秒前
jianhan完成签到,获得积分10
4秒前
dayueban发布了新的文献求助10
5秒前
5秒前
爱笑紫菜完成签到,获得积分10
5秒前
5秒前
汎影发布了新的文献求助10
6秒前
6秒前
彭于晏应助ZZY采纳,获得10
6秒前
实验好难应助niy6tyg采纳,获得10
7秒前
绝尘发布了新的文献求助20
7秒前
ShellyMaya完成签到 ,获得积分10
8秒前
科研小白完成签到,获得积分10
8秒前
kypri发布了新的文献求助30
8秒前
8秒前
烟寒完成签到,获得积分10
8秒前
科研牛人发布了新的文献求助10
9秒前
fuyuan发布了新的文献求助30
10秒前
朱老二完成签到,获得积分10
10秒前
mavissss发布了新的文献求助10
10秒前
11秒前
大模型应助冷酷豌豆采纳,获得10
11秒前
11秒前
文献求助完成签到,获得积分10
12秒前
12秒前
12秒前
科研通AI5应助等等采纳,获得10
12秒前
13秒前
dayueban完成签到,获得积分10
14秒前
慕青应助清辉夜凝采纳,获得10
14秒前
14秒前
Aymeric发布了新的文献求助10
16秒前
17秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735677
求助须知:如何正确求助?哪些是违规求助? 3279465
关于积分的说明 10015528
捐赠科研通 2996202
什么是DOI,文献DOI怎么找? 1643929
邀请新用户注册赠送积分活动 781579
科研通“疑难数据库(出版商)”最低求助积分说明 749423