典型相关
脑-机接口
脑电图
计算机科学
模式识别(心理学)
诱发电位
相关性
视觉诱发电位
接口(物质)
延迟(音频)
约束(计算机辅助设计)
人工智能
支持向量机
语音识别
神经科学
数学
心理学
电信
几何学
气泡
最大气泡压力法
并行计算
作者
Jie Pan,Xiaorong Gao,FANG Yun duan,Yan Zheng,Shangkai Gao
标识
DOI:10.1088/1741-2560/8/3/036027
摘要
In this study, a novel method of phase constrained canonical correlation analysis (p-CCA) is presented for classifying steady-state visual evoked potentials (SSVEPs) using multichannel electroencephalography (EEG) signals. p-CCA is employed to improve the performance of the SSVEP-based brain-computer interface (BCI) system using standard CCA. SSVEP response phases are estimated based on the physiologically meaningful apparent latency and are added as a reliable constraint into standard CCA. The results of EEG experiments involving 10 subjects demonstrate that p-CCA consistently outperforms standard CCA in classification accuracy. The improvement is up to 6.8% using 1-4 s data segments. The results indicate that the reliable measurement of phase information is of importance in SSVEP-based BCIs.
科研通智能强力驱动
Strongly Powered by AbleSci AI