Estimation of ADME Properties with Substructure Pattern Recognition

广告 下部结构 计算机科学 支持向量机 人工智能 数量结构-活动关系 模式识别(心理学) 生物信息学 数据挖掘 分子描述符 训练集 试验装置 机器学习 计算生物学 化学 生物信息学 工程类 生物 药代动力学 基因 结构工程 生物化学
作者
Jie Shen,Feixiong Cheng,You Xu,Weihua Li,Yun Tang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:50 (6): 1034-1041 被引量:306
标识
DOI:10.1021/ci100104j
摘要

Over the past decade, absorption, distribution, metabolism, and excretion (ADME) property evaluation has become one of the most important issues in the process of drug discovery and development. Since in vivo and in vitro evaluations are costly and laborious, in silico techniques had been widely used to estimate ADME properties of chemical compounds. Traditional prediction methods usually try to build a functional relationship between a set of molecular descriptors and a given ADME property. Although traditional methods have been successfully used in many cases, the accuracy and efficiency of molecular descriptors must be concerned. Herein, we report a new classification method based on substructure pattern recognition, in which each molecule is represented as a substructure pattern fingerprint based on a predefined substructure dictionary, and then a support vector machine (SVM) algorithm is applied to build the prediction model. Therefore, a direct connection between substructures and molecular properties is built. The most important substructure patterns can be identified via the information gain analysis, which could help to interpret the models from a medicinal chemistry perspective. Afterward, this method was verified with two data sets, one for blood-brain barrier (BBB) penetration and the other for human intestinal absorption (HIA). The results demonstrated that the overall predictive accuracies of the best HIA model for the training and test sets were 98.5 and 98.8%, and the overall predictive accuracies of the best BBB model for the training and test sets were 98.8 and 98.4%, which confirmed the reliability of our method. In the additional validations, the predictive accuracies were 94 and 69.5% for the HIA and the BBB models, respectively. Moreover, some of the representative key substructure patterns which significantly correlated with the HIA and BBB penetration properties were also presented.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
认真台灯发布了新的文献求助10
刚刚
HAO完成签到,获得积分10
1秒前
isonomia完成签到,获得积分10
1秒前
1秒前
xia完成签到,获得积分10
1秒前
pluto应助chnningji采纳,获得10
1秒前
smh完成签到,获得积分10
1秒前
1秒前
Mikan完成签到,获得积分10
1秒前
个性宝川发布了新的文献求助10
2秒前
cd发布了新的文献求助10
2秒前
2秒前
冷酷严青发布了新的文献求助10
2秒前
ding应助眼睛大乐珍采纳,获得10
3秒前
3秒前
充电宝应助黄石采纳,获得10
3秒前
一一发布了新的文献求助10
4秒前
琪音_xy完成签到,获得积分20
4秒前
4秒前
凌晨五点的完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
mmnn完成签到 ,获得积分10
5秒前
苦尽甘来完成签到,获得积分10
5秒前
Gauss完成签到,获得积分0
5秒前
AlinaLee发布了新的文献求助15
5秒前
空空发布了新的文献求助10
6秒前
Jasper应助xiuxiu采纳,获得10
6秒前
蔡勇强发布了新的文献求助10
6秒前
hhy完成签到,获得积分10
6秒前
小二郎应助安诺采纳,获得10
6秒前
6秒前
6秒前
6秒前
沉默靳发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
sxq发布了新的文献求助10
7秒前
彭于晏应助zxswuyin采纳,获得10
7秒前
华仔应助呆萌含蕊采纳,获得10
7秒前
samxie完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708093
求助须知:如何正确求助?哪些是违规求助? 5186941
关于积分的说明 15252667
捐赠科研通 4861172
什么是DOI,文献DOI怎么找? 2609274
邀请新用户注册赠送积分活动 1559914
关于科研通互助平台的介绍 1517692