已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Estimation of ADME Properties with Substructure Pattern Recognition

广告 下部结构 计算机科学 支持向量机 人工智能 数量结构-活动关系 模式识别(心理学) 生物信息学 数据挖掘 分子描述符 训练集 试验装置 机器学习 计算生物学 化学 生物信息学 工程类 生物 药代动力学 生物化学 结构工程 基因
作者
Jie Shen,Feixiong Cheng,You Xu,Weihua Li,Yun Tang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:50 (6): 1034-1041 被引量:306
标识
DOI:10.1021/ci100104j
摘要

Over the past decade, absorption, distribution, metabolism, and excretion (ADME) property evaluation has become one of the most important issues in the process of drug discovery and development. Since in vivo and in vitro evaluations are costly and laborious, in silico techniques had been widely used to estimate ADME properties of chemical compounds. Traditional prediction methods usually try to build a functional relationship between a set of molecular descriptors and a given ADME property. Although traditional methods have been successfully used in many cases, the accuracy and efficiency of molecular descriptors must be concerned. Herein, we report a new classification method based on substructure pattern recognition, in which each molecule is represented as a substructure pattern fingerprint based on a predefined substructure dictionary, and then a support vector machine (SVM) algorithm is applied to build the prediction model. Therefore, a direct connection between substructures and molecular properties is built. The most important substructure patterns can be identified via the information gain analysis, which could help to interpret the models from a medicinal chemistry perspective. Afterward, this method was verified with two data sets, one for blood-brain barrier (BBB) penetration and the other for human intestinal absorption (HIA). The results demonstrated that the overall predictive accuracies of the best HIA model for the training and test sets were 98.5 and 98.8%, and the overall predictive accuracies of the best BBB model for the training and test sets were 98.8 and 98.4%, which confirmed the reliability of our method. In the additional validations, the predictive accuracies were 94 and 69.5% for the HIA and the BBB models, respectively. Moreover, some of the representative key substructure patterns which significantly correlated with the HIA and BBB penetration properties were also presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助勤劳的身影采纳,获得10
1秒前
Thien发布了新的文献求助20
1秒前
2秒前
ycxlb发布了新的文献求助10
3秒前
3秒前
3秒前
拖拉机完成签到 ,获得积分10
5秒前
AG杰发布了新的文献求助10
6秒前
sean11发布了新的文献求助10
6秒前
ding应助早日发SCI采纳,获得10
7秒前
lance完成签到,获得积分10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
12秒前
斯文败类应助义气幼珊采纳,获得10
13秒前
春花秋月发布了新的文献求助10
15秒前
15秒前
今后应助兴奋的铃铛采纳,获得10
15秒前
16秒前
Liangstar完成签到 ,获得积分10
19秒前
SophiaMX发布了新的文献求助10
19秒前
Orange应助D调的华丽采纳,获得10
20秒前
Ava应助黄小雨采纳,获得10
20秒前
23秒前
24秒前
25秒前
25秒前
酷酷海豚发布了新的文献求助10
26秒前
27秒前
123完成签到 ,获得积分10
28秒前
30秒前
CR7发布了新的文献求助10
31秒前
32秒前
辛辛完成签到 ,获得积分10
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5394402
求助须知:如何正确求助?哪些是违规求助? 4515551
关于积分的说明 14054852
捐赠科研通 4426835
什么是DOI,文献DOI怎么找? 2431517
邀请新用户注册赠送积分活动 1423661
关于科研通互助平台的介绍 1402599