Estimation of ADME Properties with Substructure Pattern Recognition

广告 下部结构 计算机科学 支持向量机 人工智能 数量结构-活动关系 模式识别(心理学) 生物信息学 数据挖掘 分子描述符 训练集 试验装置 机器学习 计算生物学 化学 生物信息学 工程类 生物 药代动力学 基因 结构工程 生物化学
作者
Jie Shen,Feixiong Cheng,You Xu,Weihua Li,Yun Tang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:50 (6): 1034-1041 被引量:306
标识
DOI:10.1021/ci100104j
摘要

Over the past decade, absorption, distribution, metabolism, and excretion (ADME) property evaluation has become one of the most important issues in the process of drug discovery and development. Since in vivo and in vitro evaluations are costly and laborious, in silico techniques had been widely used to estimate ADME properties of chemical compounds. Traditional prediction methods usually try to build a functional relationship between a set of molecular descriptors and a given ADME property. Although traditional methods have been successfully used in many cases, the accuracy and efficiency of molecular descriptors must be concerned. Herein, we report a new classification method based on substructure pattern recognition, in which each molecule is represented as a substructure pattern fingerprint based on a predefined substructure dictionary, and then a support vector machine (SVM) algorithm is applied to build the prediction model. Therefore, a direct connection between substructures and molecular properties is built. The most important substructure patterns can be identified via the information gain analysis, which could help to interpret the models from a medicinal chemistry perspective. Afterward, this method was verified with two data sets, one for blood-brain barrier (BBB) penetration and the other for human intestinal absorption (HIA). The results demonstrated that the overall predictive accuracies of the best HIA model for the training and test sets were 98.5 and 98.8%, and the overall predictive accuracies of the best BBB model for the training and test sets were 98.8 and 98.4%, which confirmed the reliability of our method. In the additional validations, the predictive accuracies were 94 and 69.5% for the HIA and the BBB models, respectively. Moreover, some of the representative key substructure patterns which significantly correlated with the HIA and BBB penetration properties were also presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
朴实问筠发布了新的文献求助10
刚刚
Destiny发布了新的文献求助10
2秒前
大模型应助明理的又菡采纳,获得10
2秒前
嗯哼应助zhzhzh采纳,获得20
2秒前
一二三四发布了新的文献求助10
2秒前
2秒前
3秒前
Cker完成签到,获得积分10
4秒前
月入十达不刘应助dbb采纳,获得10
4秒前
cheryl完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
6秒前
kiwi完成签到,获得积分10
6秒前
笨笨摇伽发布了新的文献求助10
6秒前
卡哥完成签到,获得积分10
6秒前
7秒前
8秒前
是凡凡呀完成签到,获得积分10
9秒前
京客家发布了新的文献求助10
9秒前
长欢发布了新的文献求助10
9秒前
10秒前
佛山婆婆完成签到,获得积分10
11秒前
11秒前
实心小墩墩发布了新的文献求助100
12秒前
12秒前
12秒前
TheGala完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
13秒前
14秒前
jiang发布了新的文献求助10
14秒前
热情钥匙完成签到,获得积分10
14秒前
15秒前
银角大王应助Muxi采纳,获得10
15秒前
万能图书馆应助是凡凡呀采纳,获得10
15秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218437
求助须知:如何正确求助?哪些是违规求助? 2867675
关于积分的说明 8157461
捐赠科研通 2534649
什么是DOI,文献DOI怎么找? 1367095
科研通“疑难数据库(出版商)”最低求助积分说明 644934
邀请新用户注册赠送积分活动 618105