化学
极化率
分子间力
分子
Crystal(编程语言)
密度泛函理论
物理化学
单晶
结晶学
傅里叶变换红外光谱
热重分析
红外光谱学
分析化学(期刊)
计算化学
有机化学
化学工程
工程类
计算机科学
程序设计语言
标识
DOI:10.1002/crat.202100017
摘要
Abstract This article deals with synthesis, growth, structure, and characterization of 5‐chloro‐3‐methoxy‐4‐hydroxybenzaldehyde (5CMHBA or 5‐chlorovanillin) single crystals. A facile one‐pot method is employed for the chlorination of vanillin using N ‐chlorosuccinimide. After chlorination, the single crystals of 5CMHBA are grown by slow evaporation solution growth technique. Grown crystals are subjected to single crystal X‐ray diffraction (SXRD), Fourier Transform Infrared (FTIR), and Thermogravimetric‐Differential Thermal Analysis (TG‐DTA). 5CMHBA crystallizes in the tetragonal crystal system with the space group P4 2 /n. Vibrational characteristics are studied using FTIR. Further, thermal studies of the crystal are carried out using simultaneous TG‐DTA thermal analyzer. The molecular structure and its intermolecular interactions are studied by applying time–dependent density functional theory (TD‐DFT) using Gaussian 09 program and Hirshfeld surface analysis. A lesser energy gap of the 5CMHBA compared to that of vanillin shows the high reactivity of the molecule. Dipole moment, polarizability, and hyper‐polarizability are calculated in the molecular level and found to have greater polarizability than vanillin and also higher in order than that of standard urea molecule. This reveals the suitability of the molecule for nonlinear optical applications. The intermolecular interactions and porosity are analyzed and compared with vanillin and its polymorphs by Hirshfeld surface analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI