Feature Selection for Cross-Scene Hyperspectral Image Classification Using Cross-Domain I-ReliefF

计算机科学 高光谱成像 人工智能 特征选择 模式识别(心理学) 特征(语言学) 冗余(工程) 特征提取 计算机视觉 哲学 语言学 操作系统
作者
Chengjie Zhang,Minchao Ye,Lei Ling,Yuntao Qian
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:14: 5932-5949 被引量:16
标识
DOI:10.1109/jstars.2021.3086151
摘要

In the classification of hyperspectral images (HSIs), too many spectral bands (features) cause feature redundancy, resulting in a reduction in classification accuracy. In order to solve this problem, it is a good method to use feature selection to search for a feature subset which is useful for classification. Iterative ReliefF (I-ReliefF) is a traditional single-scene-based algorithm, and it has good convergence, efficiency, and can handle feature selection problems well in most scenes. Most single-scene-based feature selection methods perform poorly in some scenes (domains) which lack labeled samples. As the number of HSIs increases, the cross-scene feature selection algorithms which utilize two scenes to deal with the high dimension and low sample size problem are more and more desired. The spectral shift is a common problem in cross-scene feature selection. It leads to difference in spectral feature distribution between source and target scenes even though these scenes are highly similar. To solve the above problems, we extend I-ReliefF to a cross-scene algorithm: cross-domain I-ReliefF (CDIRF). CDIRF includes a cross-scene rule to update feature weights, which considers the separability of different land-cover classes and the consistency of the spectral features between two scenes. So CDIRF can effectively utilize the information of source scene to improve the performance of feature selection in target scene. The experiments are conducted on three cross-scene datasets for verification, and the experimental results demonstrate the superiority and feasibility of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luoshiyi发布了新的文献求助10
刚刚
赧赧发布了新的文献求助10
刚刚
刚刚
枣核儿完成签到,获得积分10
刚刚
刚刚
1秒前
2秒前
奋斗平卉发布了新的文献求助10
2秒前
wanci应助友好的冥王星采纳,获得10
2秒前
布响氪盐辣应助longfang采纳,获得20
3秒前
李迅迅发布了新的文献求助10
4秒前
4秒前
希望天下0贩的0应助xin采纳,获得10
4秒前
Teddy4731发布了新的文献求助10
6秒前
go完成签到,获得积分10
7秒前
独孤骄子完成签到 ,获得积分0
7秒前
dzx完成签到 ,获得积分10
8秒前
馨馨完成签到 ,获得积分10
8秒前
8秒前
Xiaoxiao应助清新的寄翠采纳,获得10
8秒前
8秒前
Zoe完成签到,获得积分10
8秒前
jiangchuansm完成签到,获得积分10
9秒前
luoshiyi完成签到,获得积分10
9秒前
bkagyin应助奋斗平卉采纳,获得10
9秒前
烟花应助耍酷青梦采纳,获得10
10秒前
科研通AI5应助科研废物采纳,获得10
11秒前
11秒前
12秒前
12秒前
嘟嘟嘟发布了新的文献求助10
13秒前
ppp完成签到,获得积分10
13秒前
14秒前
aaaaaazai发布了新的文献求助10
14秒前
xiaozheng完成签到,获得积分10
15秒前
15秒前
潇潇声韵完成签到,获得积分10
15秒前
16秒前
16秒前
彭日晓发布了新的文献求助10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Geotechnical characterization of slope movements 500
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3753216
求助须知:如何正确求助?哪些是违规求助? 3296842
关于积分的说明 10095985
捐赠科研通 3011499
什么是DOI,文献DOI怎么找? 1653984
邀请新用户注册赠送积分活动 788565
科研通“疑难数据库(出版商)”最低求助积分说明 752900