已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning and network-based models to identify genetic risk factors to the progression and survival of colorectal cancer

结直肠癌 比例危险模型 生存分析 转录组 计算生物学 基因 生物 癌症 生物信息学 肿瘤科 医学 基因表达 遗传学 内科学
作者
Md. Jakir Hossain,Utpala Nanda Chowdhury,M. Babul Islam,Shahadat Uddin,Mohammad Boshir Ahmed,Julian M.W. Quinn,Mohammad Ali Moni
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:135: 104539-104539 被引量:23
标识
DOI:10.1016/j.compbiomed.2021.104539
摘要

Colorectal cancer (CRC) is one of the most common and lethal malignant lesions. Determining how the identified risk factors drive the formation and development of CRC could be an essential means for effective therapeutic development. Aiming this, we investigated how the altered gene expression resulting from exposure to putative CRC risk factors contribute to prognostic biomarker identification. Differentially expressed genes (DEGs) were first identified for CRC and other eight risk factors. Gene set enrichment analysis (GSEA) through the molecular pathway and gene ontology (GO), as well as protein-protein interaction (PPI) network, were then conducted to predict the functions of these DEGs. Our identified genes were explored through the dbGaP and OMIM databases to compare with the already identified and known prognostic CRC biomarkers. The survival time of CRC patients was also examined using a Cox Proportional Hazard regression-based prognostic model by integrating transcriptome data from The Cancer Genome Atlas (TCGA). In this study, PPI analysis identified 4 sub-networks and 8 hub genes that may be potential therapeutic targets, including CXCL8, ICAM1, SOD2, CXCL2, CCL20, OIP5, BUB1, ASPM and IL1RN. We also identified seven signature genes (PRR5.ARHGAP8, CA7, NEDD4L, GFR2, ARHGAP8, SMTN, OIP5) in independent analysis and among which PRR5. ARHGAP8 was found in both multivariate analyses and in analyses that combined gene expression and clinical information. This approach provides both mechanistic information and, when combined with predictive clinical information, good evidence that the identified genes are significant biomarkers of processes involved in CRC progression and survival.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gentle发布了新的文献求助30
3秒前
4秒前
6秒前
Zanker发布了新的文献求助10
8秒前
十八冠六完成签到,获得积分10
8秒前
11秒前
旧辞发布了新的文献求助10
11秒前
sophia完成签到 ,获得积分10
11秒前
Gentle完成签到,获得积分20
14秒前
渔人发布了新的文献求助20
14秒前
卢盈杉发布了新的文献求助10
14秒前
14秒前
清风如月完成签到,获得积分10
15秒前
16秒前
16秒前
cmicha发布了新的文献求助10
17秒前
科研通AI5应助猩心采纳,获得10
18秒前
好好完成签到,获得积分10
19秒前
欢呼毛豆完成签到,获得积分10
19秒前
璐璐发布了新的文献求助10
21秒前
Singularity应助科研通管家采纳,获得10
23秒前
科目三应助科研通管家采纳,获得10
23秒前
大个应助科研通管家采纳,获得10
23秒前
Singularity应助科研通管家采纳,获得10
23秒前
Lucas应助科研通管家采纳,获得10
23秒前
MchemG应助科研通管家采纳,获得10
24秒前
乐乐应助科研通管家采纳,获得10
24秒前
情怀应助科研通管家采纳,获得30
24秒前
24秒前
26秒前
FXY发布了新的文献求助10
27秒前
dm11完成签到,获得积分10
28秒前
31秒前
32秒前
33秒前
wanci应助Zanker采纳,获得10
35秒前
害羞发带发布了新的文献求助10
35秒前
Akim应助焱阳采纳,获得10
39秒前
自信的宝贝完成签到,获得积分10
39秒前
43秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671080
求助须知:如何正确求助?哪些是违规求助? 3227961
关于积分的说明 9777672
捐赠科研通 2938135
什么是DOI,文献DOI怎么找? 1609774
邀请新用户注册赠送积分活动 760457
科研通“疑难数据库(出版商)”最低求助积分说明 735962