清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Online Remaining Useful Life Prediction of Milling Cutters Based on Multisource Data and Feature Learning

保险丝(电气) 计算机科学 离群值 特征(语言学) 人工智能 数据挖掘 特征提取 机器学习 数据建模 统计的 支持向量机 模式识别(心理学) 工程类 数据库 统计 哲学 电气工程 语言学 数学
作者
Liang Guo,Yaoxiang Yu,Hongli Gao,Tao Feng,Yuekai Liu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (8): 5199-5208 被引量:37
标识
DOI:10.1109/tii.2021.3118994
摘要

A milling cutter is one of the most important parts of machine tools. Its working status significantly influences the precision of workpiece. Due to the complex wear mechanism, the single sensor may be difficult to acquire the complete degradation information of milling cutters. Therefore, in this article, a feature learning based method is proposed to automatically extract features from multisource data and predict the remaining useful life of cutting tools in real time. First, a statistic-based method is constructed to detect and delete the outliers hidden in the monitoring data. Second, the clean data are input into a multiscale convolutional attention network (MSAN) to learn features and fuse multisource data. At last, the fused data are used to predict the remaining useful life of cutting tools in a regression layer. Compared with traditional tool life prediction methods, the proposed method is able to fuse multisource data through an attention feature learning model to conduct the life prediction of tools. Additionally, the data cleaning and model optimization methods are also proposed to promote engineering practicability. To validate the effectiveness of such method, the life testing experiments on milling cutters are conducted to obtain run-to-failure data. In those experiments, multisensor monitor data are acquired, which are used to conduct validation experiments testing the effectiveness of the proposed method. The results indicate the superiority of the proposed method in remaining useful life prediction milling cutters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
19秒前
21秒前
熊猫胖胖WITH超人完成签到,获得积分20
24秒前
35秒前
耍酷平凡发布了新的文献求助10
40秒前
42秒前
ewxf2001发布了新的文献求助10
47秒前
49秒前
花园里的蒜完成签到 ,获得积分0
51秒前
荔枝发布了新的文献求助20
54秒前
ewxf2001完成签到,获得积分10
55秒前
juan完成签到 ,获得积分10
1分钟前
cxwcn完成签到 ,获得积分10
1分钟前
Hiram完成签到,获得积分10
1分钟前
1分钟前
wmj完成签到,获得积分10
1分钟前
Ava应助落寞的又菡采纳,获得10
1分钟前
刚子完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
jiejie完成签到,获得积分10
3分钟前
3分钟前
沿途有你完成签到 ,获得积分10
3分钟前
耍酷平凡完成签到,获得积分10
3分钟前
荔枝发布了新的文献求助10
4分钟前
4分钟前
连安阳完成签到,获得积分10
4分钟前
5分钟前
荔枝发布了新的文献求助10
5分钟前
丁老三完成签到 ,获得积分10
5分钟前
6分钟前
Jim发布了新的文献求助10
7分钟前
7分钟前
7分钟前
两个榴莲完成签到,获得积分0
7分钟前
7分钟前
Unlisted发布了新的文献求助10
7分钟前
落寞的又菡完成签到,获得积分10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582521
求助须知:如何正确求助?哪些是违规求助? 4000238
关于积分的说明 12382295
捐赠科研通 3675277
什么是DOI,文献DOI怎么找? 2025775
邀请新用户注册赠送积分活动 1059428
科研通“疑难数据库(出版商)”最低求助积分说明 946108