Online Remaining Useful Life Prediction of Milling Cutters Based on Multisource Data and Feature Learning

保险丝(电气) 计算机科学 离群值 特征(语言学) 人工智能 数据挖掘 特征提取 机器学习 数据建模 统计的 支持向量机 模式识别(心理学) 工程类 数据库 语言学 哲学 统计 数学 电气工程
作者
Liang Guo,Yaoxiang Yu,Hongli Gao,Tao Feng,Yuekai Liu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (8): 5199-5208 被引量:37
标识
DOI:10.1109/tii.2021.3118994
摘要

A milling cutter is one of the most important parts of machine tools. Its working status significantly influences the precision of workpiece. Due to the complex wear mechanism, the single sensor may be difficult to acquire the complete degradation information of milling cutters. Therefore, in this article, a feature learning based method is proposed to automatically extract features from multisource data and predict the remaining useful life of cutting tools in real time. First, a statistic-based method is constructed to detect and delete the outliers hidden in the monitoring data. Second, the clean data are input into a multiscale convolutional attention network (MSAN) to learn features and fuse multisource data. At last, the fused data are used to predict the remaining useful life of cutting tools in a regression layer. Compared with traditional tool life prediction methods, the proposed method is able to fuse multisource data through an attention feature learning model to conduct the life prediction of tools. Additionally, the data cleaning and model optimization methods are also proposed to promote engineering practicability. To validate the effectiveness of such method, the life testing experiments on milling cutters are conducted to obtain run-to-failure data. In those experiments, multisensor monitor data are acquired, which are used to conduct validation experiments testing the effectiveness of the proposed method. The results indicate the superiority of the proposed method in remaining useful life prediction milling cutters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助biu采纳,获得10
1秒前
飞快的语蕊完成签到,获得积分10
2秒前
小程同学完成签到,获得积分10
3秒前
竹本完成签到 ,获得积分10
3秒前
Vanness发布了新的文献求助10
3秒前
pancake发布了新的文献求助30
4秒前
5秒前
5秒前
6秒前
浮游应助ZZZ采纳,获得10
6秒前
9秒前
9秒前
赘婿应助王小帅ok采纳,获得10
10秒前
久伴久爱完成签到 ,获得积分10
10秒前
林晨则静完成签到 ,获得积分10
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
12秒前
mingmingjiu发布了新的文献求助10
12秒前
张艺馨发布了新的文献求助10
12秒前
赵寒迟完成签到 ,获得积分10
12秒前
cwz发布了新的文献求助10
12秒前
体贴的老太完成签到,获得积分20
12秒前
孟龙威发布了新的文献求助10
13秒前
完美世界应助无奈敏采纳,获得10
13秒前
小陈完成签到,获得积分10
14秒前
彭于晏应助残幻采纳,获得10
14秒前
123应助无敌小b采纳,获得10
15秒前
FashionBoy应助啤酒半斤采纳,获得10
15秒前
15秒前
哭泣的宛丝完成签到,获得积分10
16秒前
biu发布了新的文献求助10
16秒前
鱼猫完成签到,获得积分20
16秒前
17秒前
chenhy完成签到,获得积分10
17秒前
帅气的Bond完成签到,获得积分10
18秒前
aa发布了新的文献求助10
19秒前
小青椒应助cwz采纳,获得30
19秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424419
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163869
捐赠科研通 4455739
什么是DOI,文献DOI怎么找? 2443880
邀请新用户注册赠送积分活动 1435011
关于科研通互助平台的介绍 1412337