Online Remaining Useful Life Prediction of Milling Cutters Based on Multisource Data and Feature Learning

保险丝(电气) 计算机科学 离群值 特征(语言学) 人工智能 数据挖掘 特征提取 机器学习 数据建模 统计的 支持向量机 模式识别(心理学) 工程类 数据库 统计 哲学 电气工程 语言学 数学
作者
Liang Guo,Yaoxiang Yu,Hongli Gao,Tao Feng,Yuekai Liu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (8): 5199-5208 被引量:37
标识
DOI:10.1109/tii.2021.3118994
摘要

A milling cutter is one of the most important parts of machine tools. Its working status significantly influences the precision of workpiece. Due to the complex wear mechanism, the single sensor may be difficult to acquire the complete degradation information of milling cutters. Therefore, in this article, a feature learning based method is proposed to automatically extract features from multisource data and predict the remaining useful life of cutting tools in real time. First, a statistic-based method is constructed to detect and delete the outliers hidden in the monitoring data. Second, the clean data are input into a multiscale convolutional attention network (MSAN) to learn features and fuse multisource data. At last, the fused data are used to predict the remaining useful life of cutting tools in a regression layer. Compared with traditional tool life prediction methods, the proposed method is able to fuse multisource data through an attention feature learning model to conduct the life prediction of tools. Additionally, the data cleaning and model optimization methods are also proposed to promote engineering practicability. To validate the effectiveness of such method, the life testing experiments on milling cutters are conducted to obtain run-to-failure data. In those experiments, multisensor monitor data are acquired, which are used to conduct validation experiments testing the effectiveness of the proposed method. The results indicate the superiority of the proposed method in remaining useful life prediction milling cutters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠成危发布了新的文献求助10
刚刚
言笑晏晏发布了新的文献求助10
刚刚
IanYoung71发布了新的文献求助10
1秒前
沉静傻姑完成签到,获得积分10
1秒前
dzy关注了科研通微信公众号
1秒前
热舞特发布了新的文献求助30
2秒前
cc发布了新的文献求助10
2秒前
林士萍发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
千夜发布了新的文献求助10
4秒前
小吴发布了新的文献求助30
6秒前
7秒前
7秒前
7秒前
8秒前
yookia应助JIANYOUFU采纳,获得10
8秒前
GAOYI完成签到,获得积分10
8秒前
8秒前
饼的书发布了新的文献求助10
9秒前
热舞特完成签到,获得积分10
9秒前
香蕉觅云应助复杂若男采纳,获得10
9秒前
田様应助两只老虎和兔子采纳,获得10
9秒前
隐形曼青应助PaoPao采纳,获得10
9秒前
rekill完成签到,获得积分10
10秒前
10秒前
爆米花应助坚强的严青采纳,获得10
10秒前
11秒前
11秒前
123应助cc采纳,获得10
12秒前
GAOYI发布了新的文献求助10
12秒前
那一天发布了新的文献求助10
13秒前
天天快乐应助jun采纳,获得10
13秒前
14秒前
idXin_Qing完成签到,获得积分10
15秒前
失眠成危完成签到,获得积分10
16秒前
17秒前
17秒前
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352