A novel systematic multi-objective optimization to achieve high-efficiency and low-emission waste polymeric foam gasification using response surface methodology and TOPSIS method

托普西斯 工艺工程 合成气 废物管理 能量载体 响应面法 材料科学 环境科学 工程类 计算机科学 化学 运筹学 机器学习 有机化学
作者
Rezgar Hasanzadeh,Mehran Mojaver,Taher Azdast,Chul Park
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:430: 132958-132958 被引量:61
标识
DOI:10.1016/j.cej.2021.132958
摘要

Gasification is one of the most important thermochemical processes to convert a solid fuel to energy carriers of a gaseous product called syngas. This process has been well addressed in the literature for biomass and several valuable researches have been performed on plastic waste gasification. However, it is the first effort for a systematic comprehensive investigation and multi-objective optimization of gasification process for waste polymeric foams using response surface methodology and TOPSIS (Technique for Order Performance by Similarity to Ideal Solution) approach. Air and steam waste rigid polyurethane foam gasifications were modeled using coupled method of Gibbs minimization free energy and Lagrange method of undetermined multipliers, and then, validated. Effects of key features consisting gasification temperature and moisture content in both air and steam gasification types and equivalence ratio in air and steam to waste foam ratio in steam types were thoroughly studied on gas composition and energy and hydrogen efficiencies. Analysis of variance was employed for recognizing the most effective parameters on air and steam gasification performances. The results revealed that hydrogen and energy efficiencies of air gasification at multi-objective optimum conditions were 42.68 % and 89.58 %, respectively, and these values were 64.02 % and 96.52 % for steam gasification type. Air gasification of waste rigid polyurethane foam produced 3.13 g of CO2 emission at optimum state; however, its value was 10.02 g for steam gasification type. A multi-criteria decision analysis based on TOPSIS method was utilized for selecting the best gasification type in different scenarios and the findings indicated that air gasification had better performance compared to steam type due to its low emissions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助guajiguaji采纳,获得10
刚刚
圣晟胜发布了新的文献求助10
1秒前
1秒前
1秒前
不会失忆完成签到,获得积分10
3秒前
思源应助路边一颗小草采纳,获得10
3秒前
上官若男应助帅关采纳,获得10
4秒前
qin完成签到,获得积分10
5秒前
5秒前
流浪小诗人完成签到,获得积分10
5秒前
7秒前
知性的觅露完成签到,获得积分10
7秒前
朱湋帆完成签到 ,获得积分10
7秒前
devil发布了新的文献求助10
8秒前
乐乐应助咸鱼一号采纳,获得10
9秒前
11秒前
youjiang完成签到,获得积分10
11秒前
devil完成签到,获得积分10
11秒前
12秒前
12秒前
舞拽拽完成签到 ,获得积分10
14秒前
sunaijia完成签到,获得积分0
14秒前
雪白雍发布了新的文献求助10
14秒前
XiangXu完成签到,获得积分10
15秒前
guajiguaji发布了新的文献求助10
15秒前
15秒前
CipherSage应助liuq采纳,获得10
15秒前
优美的冰巧完成签到 ,获得积分10
16秒前
17秒前
17秒前
汤圆发布了新的文献求助50
17秒前
TT发布了新的文献求助10
18秒前
舒适的天奇完成签到 ,获得积分10
18秒前
YOLO完成签到 ,获得积分10
19秒前
刘奶奶的牛奶完成签到,获得积分10
20秒前
lio发布了新的文献求助10
22秒前
23秒前
23秒前
凝子老师发布了新的文献求助10
24秒前
白瓜完成签到 ,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849