Building energy consumption prediction for residential buildings using deep learning and other machine learning techniques

能源消耗 支持向量机 人工神经网络 人工智能 决策树 计算机科学 随机森林 机器学习 能量建模 深度学习 梯度升压 能量(信号处理) 工程类 数学 统计 电气工程
作者
Razak Olu-Ajayi,Hafiz Alaka,Ismail Sulaimon,Funlade Sunmola,Saheed Ajayi
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:45: 103406-103406 被引量:335
标识
DOI:10.1016/j.jobe.2021.103406
摘要

The high proportion of energy consumed in buildings has engendered the manifestation of many environmental problems which deploy adverse impacts on the existence of mankind. The prediction of building energy use is essentially proclaimed to be a method for energy conservation and improved decision-making towards decreasing energy usage. Also, the construction of energy efficient buildings will aid the reduction of total energy consumed in newly constructed buildings. Machine Learning (ML) method is recognised as the best suited approach for producing desired outcomes in prediction task. Hence, in several studies, ML has been applied in the field of energy consumption of operational building. However, there are not many studies investigating the suitability of ML methods for forecasting the potential building energy consumption at the early design phase to reduce the construction of more energy inefficient buildings. To address this gap, this paper presents the utilization of several machine learning techniques namely Artificial Neural Network (ANN), Gradient Boosting (GB), Deep Neural Network (DNN), Random Forest (RF), Stacking, K Nearest Neighbour (KNN), Support Vector Machine (SVM), Decision tree (DT) and Linear Regression (LR) for predicting annual building energy consumption using a large dataset of residential buildings. This study also examines the effect of the building clusters on the model performance. The novelty of this paper is to develop a model that enables designers input key features of a building design and forecast the annual average energy consumption at the early stages of development. This result reveals DNN as the most efficient predictive model for energy use at the early design phase and this presents a motivation for building designers to utilize it before construction to make informed decision, manage and optimize design. • The development of an efficient energy predictive model for design stage of building. • Application of feature selection to identify the most relevant variables for annual energy prediction. • Deep learning, ensemble and other machine learning models were developed for predicting annual energy consumption. • The effect of data size on model performance was investigated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JACK发布了新的文献求助10
刚刚
刚刚
xiaa0618发布了新的文献求助10
1秒前
2秒前
图图应助复杂的雨寒采纳,获得30
3秒前
3秒前
踏实无敌应助Mumu采纳,获得10
3秒前
3秒前
我是老大应助何柯采纳,获得10
5秒前
6秒前
科研小白完成签到,获得积分10
6秒前
xiaofeiyan发布了新的文献求助30
7秒前
消失的牢大完成签到,获得积分10
7秒前
王小美发布了新的文献求助10
7秒前
9秒前
852应助sci采纳,获得10
9秒前
zayne完成签到 ,获得积分10
9秒前
无限进步发布了新的文献求助10
9秒前
123456完成签到 ,获得积分10
10秒前
深情安青应助鲁路修采纳,获得10
10秒前
Mumu完成签到,获得积分10
11秒前
忘的澜完成签到,获得积分10
12秒前
12秒前
14秒前
祎祎完成签到,获得积分10
14秒前
14秒前
科研通AI5应助hnsun21采纳,获得10
14秒前
Wink14551发布了新的文献求助10
15秒前
欢呼的元冬完成签到,获得积分10
16秒前
风起发布了新的文献求助10
16秒前
未来的幻想完成签到,获得积分10
16秒前
zzk发布了新的文献求助10
19秒前
yyyyy发布了新的文献求助10
20秒前
顾矜应助JACK采纳,获得10
21秒前
泡沫铜发布了新的文献求助10
22秒前
22秒前
hky关闭了hky文献求助
24秒前
24秒前
科研通AI5应助无限进步采纳,获得10
25秒前
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740489
求助须知:如何正确求助?哪些是违规求助? 3283250
关于积分的说明 10034830
捐赠科研通 3000165
什么是DOI,文献DOI怎么找? 1646428
邀请新用户注册赠送积分活动 783550
科研通“疑难数据库(出版商)”最低求助积分说明 750411