Building quantum mechanics quality force fields of proteins with the generalized energy-based fragmentation approach and machine learning

力场(虚构) 范德瓦尔斯力 二面角 计算机科学 高斯分布 量子 从头算 统计物理学 物理 量子力学 人工智能 分子 氢键
作者
Zheng Cheng,Jiahui Du,Lei Zhang,Jing Ma,Wei Li,Shuhua Li
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:24 (3): 1326-1337 被引量:26
标识
DOI:10.1039/d1cp03934b
摘要

We combined our generalized energy-based fragmentation (GEBF) approach and machine learning (ML) technique to construct quantum mechanics (QM) quality force fields for proteins. In our scheme, the training sets for a protein are only constructed from its small subsystems, which capture all short-range interactions in the target system. The energy of a given protein is expressed as the summation of atomic contributions from QM calculations of various subsystems, corrected by long-range Coulomb and van der Waals interactions. With the Gaussian approximation potential (GAP) method, our protocol can automatically generate training sets with high efficiency. To facilitate the construction of training sets for proteins, we store all trained subsystem data in a library. If subsystems in the library are detected in a new protein, corresponding datasets can be directly reused as a part of the training set on this new protein. With two polypeptides, 4ZNN and 1XQ8 segment, as examples, the energies and forces predicted by GEBF-GAP are in good agreement with those from conventional QM calculations, and dihedral angle distributions from GEBF-GAP molecular dynamics (MD) simulations can also well reproduce those from ab initio MD simulations. In addition, with the training set generated from GEBF-GAP, we also demonstrate that GEBF-ML force fields constructed by neural network (NN) methods can also show QM quality. Therefore, the present work provides an efficient and systematic way to build QM quality force fields for biological systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jon发布了新的文献求助10
2秒前
4秒前
q870287完成签到,获得积分10
5秒前
可爱香槟发布了新的文献求助10
6秒前
8秒前
8秒前
SciGPT应助沈芊采纳,获得10
8秒前
善学以致用应助solemneven采纳,获得10
9秒前
干净初彤发布了新的文献求助10
9秒前
9秒前
科研通AI2S应助无心的土豆采纳,获得10
12秒前
句芒发布了新的文献求助10
12秒前
13秒前
可爱香槟发布了新的文献求助10
15秒前
18秒前
19秒前
zhengzhao发布了新的文献求助10
20秒前
xxxd完成签到,获得积分10
21秒前
24秒前
可爱香槟发布了新的文献求助10
26秒前
句芒完成签到,获得积分10
27秒前
YwYzzZ完成签到,获得积分10
27秒前
赛百味完成签到,获得积分10
29秒前
香蕉觅云应助orange9采纳,获得10
31秒前
充电宝应助科研通管家采纳,获得10
33秒前
33秒前
今后应助科研通管家采纳,获得10
33秒前
科目三应助科研通管家采纳,获得10
33秒前
又绿应助科研通管家采纳,获得10
33秒前
又绿应助科研通管家采纳,获得10
33秒前
丘比特应助科研通管家采纳,获得10
33秒前
共享精神应助科研通管家采纳,获得10
33秒前
子车茗应助科研通管家采纳,获得30
33秒前
33秒前
33秒前
夏凛完成签到 ,获得积分10
34秒前
cquank发布了新的文献求助10
35秒前
李晨阳完成签到,获得积分10
36秒前
36秒前
38秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3356590
求助须知:如何正确求助?哪些是违规求助? 2980182
关于积分的说明 8693388
捐赠科研通 2661758
什么是DOI,文献DOI怎么找? 1457368
科研通“疑难数据库(出版商)”最低求助积分说明 674761
邀请新用户注册赠送积分活动 665624