Building quantum mechanics quality force fields of proteins with the generalized energy-based fragmentation approach and machine learning

力场(虚构) 范德瓦尔斯力 二面角 计算机科学 高斯分布 量子 从头算 统计物理学 物理 量子力学 人工智能 分子 氢键
作者
Zheng Cheng,Jiahui Du,Lei Zhang,Jing Ma,Wei Li,Shuhua Li
出处
期刊:Physical Chemistry Chemical Physics [Royal Society of Chemistry]
卷期号:24 (3): 1326-1337 被引量:26
标识
DOI:10.1039/d1cp03934b
摘要

We combined our generalized energy-based fragmentation (GEBF) approach and machine learning (ML) technique to construct quantum mechanics (QM) quality force fields for proteins. In our scheme, the training sets for a protein are only constructed from its small subsystems, which capture all short-range interactions in the target system. The energy of a given protein is expressed as the summation of atomic contributions from QM calculations of various subsystems, corrected by long-range Coulomb and van der Waals interactions. With the Gaussian approximation potential (GAP) method, our protocol can automatically generate training sets with high efficiency. To facilitate the construction of training sets for proteins, we store all trained subsystem data in a library. If subsystems in the library are detected in a new protein, corresponding datasets can be directly reused as a part of the training set on this new protein. With two polypeptides, 4ZNN and 1XQ8 segment, as examples, the energies and forces predicted by GEBF-GAP are in good agreement with those from conventional QM calculations, and dihedral angle distributions from GEBF-GAP molecular dynamics (MD) simulations can also well reproduce those from ab initio MD simulations. In addition, with the training set generated from GEBF-GAP, we also demonstrate that GEBF-ML force fields constructed by neural network (NN) methods can also show QM quality. Therefore, the present work provides an efficient and systematic way to build QM quality force fields for biological systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
speedness完成签到,获得积分10
1秒前
盷昀发布了新的文献求助10
1秒前
萍子发布了新的文献求助10
1秒前
柚子完成签到,获得积分10
1秒前
深情安青应助小谷采纳,获得10
2秒前
2秒前
含蓄的莆完成签到,获得积分10
2秒前
叽歪提完成签到,获得积分10
2秒前
haorui发布了新的文献求助30
2秒前
胡杨柳完成签到,获得积分10
2秒前
动力小滋完成签到,获得积分10
2秒前
Lucas应助程smile笑采纳,获得10
3秒前
麦麦完成签到,获得积分10
4秒前
Wen3197312602完成签到,获得积分10
4秒前
平淡的懿轩完成签到,获得积分10
4秒前
Capital完成签到,获得积分10
5秒前
lalala完成签到,获得积分10
5秒前
diudiu完成签到,获得积分10
5秒前
悠旷发布了新的文献求助10
6秒前
混子小高完成签到 ,获得积分10
6秒前
logan完成签到,获得积分10
6秒前
香蕉觅云应助Mao耶采纳,获得10
7秒前
CC完成签到,获得积分10
7秒前
秦春歌完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
Rose_Yang完成签到 ,获得积分10
8秒前
英吉利25发布了新的文献求助30
8秒前
mj789完成签到,获得积分20
8秒前
向雨竹发布了新的文献求助10
9秒前
Wen3197312602发布了新的文献求助10
9秒前
9秒前
动听平露完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495545
关于积分的说明 11077625
捐赠科研通 3226040
什么是DOI,文献DOI怎么找? 1783457
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874