Breaking the Dilemma of Medical Image-to-image Translation

图像翻译 翻译(生物学) 计算机科学 一致性(知识库) 图像(数学) 人工智能 困境 噪音(视频) 像素 模式(计算机接口) 计算机视觉 数学 生物 操作系统 信使核糖核酸 基因 生物化学 几何学
作者
Lingke Kong,Chenyu Lian,Detian Huang,Zhenjiang Li,Yanle Hu,Qichao Zhou
出处
期刊:Cornell University - arXiv 被引量:45
标识
DOI:10.48550/arxiv.2110.06465
摘要

Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field of medical image-to-image translation. However, neither modes are ideal. The Pix2Pix mode has excellent performance. But it requires paired and well pixel-wise aligned images, which may not always be achievable due to respiratory motion or anatomy change between times that paired images are acquired. The Cycle-consistency mode is less stringent with training data and works well on unpaired or misaligned images. But its performance may not be optimal. In order to break the dilemma of the existing modes, we propose a new unsupervised mode called RegGAN for medical image-to-image translation. It is based on the theory of "loss-correction". In RegGAN, the misaligned target images are considered as noisy labels and the generator is trained with an additional registration network to fit the misaligned noise distribution adaptively. The goal is to search for the common optimal solution to both image-to-image translation and registration tasks. We incorporated RegGAN into a few state-of-the-art image-to-image translation methods and demonstrated that RegGAN could be easily combined with these methods to improve their performances. Such as a simple CycleGAN in our mode surpasses latest NICEGAN even though using less network parameters. Based on our results, RegGAN outperformed both Pix2Pix on aligned data and Cycle-consistency on misaligned or unpaired data. RegGAN is insensitive to noises which makes it a better choice for a wide range of scenarios, especially for medical image-to-image translation tasks in which well pixel-wise aligned data are not available
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
二宝发布了新的文献求助10
2秒前
liangxu0313完成签到,获得积分10
2秒前
mrif完成签到 ,获得积分20
3秒前
8秒前
吐司匹林完成签到,获得积分10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得30
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
567完成签到,获得积分10
9秒前
舒服的摇伽完成签到 ,获得积分10
9秒前
9秒前
bxw发布了新的文献求助10
10秒前
旋转门发布了新的文献求助30
10秒前
好吃发布了新的文献求助30
12秒前
二宝完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
15秒前
15秒前
16秒前
16秒前
16秒前
俊逸亦云完成签到,获得积分10
18秒前
清脆的书桃完成签到,获得积分10
18秒前
华仔应助活力小熊猫采纳,获得10
18秒前
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134943
求助须知:如何正确求助?哪些是违规求助? 2785901
关于积分的说明 7774393
捐赠科研通 2441736
什么是DOI,文献DOI怎么找? 1298162
科研通“疑难数据库(出版商)”最低求助积分说明 625079
版权声明 600825