Identifying multi-functional bioactive peptide functions using multi-label deep learning

计算机科学 人工智能 深度学习 机器学习 支持向量机 模式识别(心理学)
作者
Wending Tang,Ruyu Dai,Wenhui Yan,Te Zhang,Yannan Bin,Enhua Xia,Junfeng Xia
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:42
标识
DOI:10.1093/bib/bbab414
摘要

Abstract The bioactive peptide has wide functions, such as lowering blood glucose levels and reducing inflammation. Meanwhile, computational methods such as machine learning are becoming more and more important for peptide functions prediction. Most of the previous studies concentrate on the single-functional bioactive peptides prediction. However, the number of multi-functional peptides is on the increase; therefore, novel computational methods are needed. In this study, we develop a method MLBP (Multi-Label deep learning approach for determining the multi-functionalities of Bioactive Peptides), which can predict multiple functions including anti-cancer, anti-diabetic, anti-hypertensive, anti-inflammatory and anti-microbial simultaneously. MLBP model takes the peptide sequence vector as input to replace the biological and physiochemical features used in other peptides predictors. Using the embedding layer, the dense continuous feature vector is learnt from the sequence vector. Then, we extract convolution features from the feature vector through the convolutional neural network layer and combine with the bidirectional gated recurrent unit layer to improve the prediction performance. The 5-fold cross-validation experiments are conducted on the training dataset, and the results show that Accuracy and Absolute true are 0.695 and 0.685, respectively. On the test dataset, Accuracy and Absolute true of MLBP are 0.709 and 0.697, with 5.0 and 4.7% higher than those of the suboptimum method, respectively. The results indicate MLBP has superior prediction performance on the multi-functional peptides identification. MLBP is available at https://github.com/xialab-ahu/MLBP and http://bioinfo.ahu.edu.cn/MLBP/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
flyingfish应助下颌磨牙钳采纳,获得10
1秒前
CodeCraft应助。。采纳,获得10
1秒前
孔院发布了新的文献求助10
1秒前
Lily发布了新的文献求助10
1秒前
777完成签到,获得积分20
2秒前
yanaftdl完成签到,获得积分10
2秒前
2秒前
杨知意完成签到,获得积分10
3秒前
4秒前
Source发布了新的文献求助10
4秒前
华仔应助Dawn采纳,获得10
7秒前
项无极完成签到,获得积分10
7秒前
2568269431完成签到 ,获得积分10
7秒前
8秒前
云_123发布了新的文献求助10
9秒前
大航完成签到,获得积分10
9秒前
华仔应助冉冉采纳,获得10
9秒前
Lily完成签到,获得积分10
11秒前
moneymonoo发布了新的文献求助40
12秒前
12秒前
Ava应助嘻嘻采纳,获得10
15秒前
。。发布了新的文献求助10
16秒前
16秒前
SLQ关闭了SLQ文献求助
17秒前
Orange应助lsl采纳,获得10
17秒前
18秒前
18秒前
慕青应助mm采纳,获得10
18秒前
耍酷的梦桃完成签到,获得积分10
19秒前
慈祥的爆米花完成签到,获得积分10
20秒前
21秒前
21秒前
Dawn发布了新的文献求助10
22秒前
23秒前
23秒前
24秒前
花啊拾肆完成签到,获得积分10
24秒前
华子完成签到,获得积分10
26秒前
马路完成签到 ,获得积分10
26秒前
粥粥卷完成签到,获得积分10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135616
求助须知:如何正确求助?哪些是违规求助? 2786482
关于积分的说明 7777675
捐赠科研通 2442483
什么是DOI,文献DOI怎么找? 1298583
科研通“疑难数据库(出版商)”最低求助积分说明 625193
版权声明 600847