人工智能
计算机科学
判别式
弹丸
特征(语言学)
模式识别(心理学)
特征学习
嵌入
上下文图像分类
代表(政治)
标杆管理
领域(数学分析)
一般化
特征提取
班级(哲学)
机器学习
图像(数学)
任务(项目管理)
特征向量
数学
经济
营销
业务
有机化学
化学
管理
法学
哲学
数学分析
政治
语言学
政治学
作者
Hao Cheng,Yufei Wang,Haoliang Li,Alex C. Kot,Bihan Wen
出处
期刊:IEEE transactions on neural networks and learning systems
[Institute of Electrical and Electronics Engineers]
日期:2023-02-16
卷期号:35 (8): 10422-10435
被引量:17
标识
DOI:10.1109/tnnls.2023.3241919
摘要
Learning the generalizable feature representation is critical to few-shot image classification. While recent works exploited task-specific feature embedding using meta-tasks for few-shot learning, they are limited in many challenging tasks as being distracted by the excursive features such as the background, domain, and style of the image samples. In this work, we propose a novel disentangled feature representation (DFR) framework, dubbed DFR, for few-shot learning applications. DFR can adaptively decouple the discriminative features that are modeled by the classification branch, from the class-irrelevant component of the variation branch. In general, most of the popular deep few-shot learning methods can be plugged in as the classification branch, thus DFR can boost their performance on various few-shot tasks. Furthermore, we propose a novel FS-DomainNet dataset based on DomainNet, for benchmarking the few-shot domain generalization (DG) tasks. We conducted extensive experiments to evaluate the proposed DFR on general, fine-grained, and cross-domain few-shot classification, as well as few-shot DG, using the corresponding four benchmarks, i.e., mini-ImageNet, tiered-ImageNet, Caltech-UCSD Birds 200-2011 (CUB), and the proposed FS-DomainNet. Thanks to the effective feature disentangling, the DFR-based few-shot classifiers achieved state-of-the-art results on all datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI