亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Computationally guided high-throughput design of self-assembling drug nanoparticles

吞吐量 药品 纳米技术 材料科学 纳米颗粒 计算机科学 医学 无线 精神科 电信
作者
Daniel Reker,Yulia Rybakova,Ameya R. Kirtane,Ruonan Cao,Jee Won Yang,Natsuda Navamajiti,Apolonia Gardner,Rosanna M. Zhang,Tina Esfandiary,Johanna L’Heureux,Thomas von Erlach,Elena M. Smekalova,Dominique Leboeuf,Kaitlyn Hess,Aaron Lopes,Jaimie Rogner,Joy Collins,Siddartha Tamang,Keiko Ishida,P. Chamberlain
出处
期刊:Nature Nanotechnology [Springer Nature]
卷期号:16 (6): 725-733 被引量:137
标识
DOI:10.1038/s41565-021-00870-y
摘要

Nanoformulations of therapeutic drugs are transforming our ability to effectively deliver and treat a myriad of conditions. Often, however, they are complex to produce and exhibit low drug loading, except for nanoparticles formed via co-assembly of drugs and small molecular dyes, which display drug-loading capacities of up to 95%. There is currently no understanding of which of the millions of small-molecule combinations can result in the formation of these nanoparticles. Here we report the integration of machine learning with high-throughput experimentation to enable the rapid and large-scale identification of such nanoformulations. We identified 100 self-assembling drug nanoparticles from 2.1 million pairings, each including one of 788 candidate drugs and one of 2,686 approved excipients. We further characterized two nanoparticles, sorafenib–glycyrrhizin and terbinafine–taurocholic acid both ex vivo and in vivo. We anticipate that our platform can accelerate the development of safer and more efficacious nanoformulations with high drug-loading capacities for a wide range of therapeutics. Self-assembly of small drugs with organic dyes represents a facile route to synthesize nanoparticles with high drug-loading capability. Here the authors combine a machine learning approach with high-throughput experimental validation to identify which combinations of drugs and excipient lead to successful nanoparticle formation and characterize the therapeutic efficacy of two of them in vitro and in animal models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助杨柳9203采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
shhoing应助科研通管家采纳,获得10
22秒前
shhoing应助科研通管家采纳,获得10
22秒前
25秒前
苹果小玉发布了新的文献求助10
28秒前
39秒前
fan发布了新的文献求助30
45秒前
48秒前
杨柳9203发布了新的文献求助10
53秒前
57秒前
1分钟前
bu拿下PHD绝不回头完成签到,获得积分10
1分钟前
1分钟前
1分钟前
李静完成签到,获得积分10
1分钟前
1分钟前
YY88687321发布了新的文献求助10
2分钟前
2分钟前
科研通AI2S应助xiaoguoxiaoguo采纳,获得10
2分钟前
yuanyuan发布了新的文献求助30
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
SHF完成签到,获得积分10
2分钟前
BowieHuang应助YY88687321采纳,获得30
2分钟前
fan完成签到,获得积分10
2分钟前
chenlina完成签到 ,获得积分10
2分钟前
2分钟前
Akim应助waomi采纳,获得10
3分钟前
3分钟前
3分钟前
充电宝应助杨柳9203采纳,获得10
3分钟前
power完成签到,获得积分10
3分钟前
zheng完成签到 ,获得积分10
3分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
英姑应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543167
求助须知:如何正确求助?哪些是违规求助? 4629339
关于积分的说明 14611117
捐赠科研通 4570598
什么是DOI,文献DOI怎么找? 2505827
邀请新用户注册赠送积分活动 1483084
关于科研通互助平台的介绍 1454407