Computationally guided high-throughput design of self-assembling drug nanoparticles

吞吐量 药品 纳米技术 材料科学 纳米颗粒 计算机科学 医学 电信 精神科 无线
作者
Daniel Reker,Yulia Rybakova,Ameya R. Kirtane,Ruonan Cao,Jee Won Yang,Natsuda Navamajiti,Apolonia Gardner,Rosanna M. Zhang,Tina Esfandiary,Johanna L’Heureux,Thomas von Erlach,Elena M. Smekalova,Dominique Leboeuf,Kaitlyn Hess,Aaron Lopes,Jaimie Rogner,Joy Collins,Siddartha Tamang,Keiko Ishida,P. Chamberlain
出处
期刊:Nature Nanotechnology [Nature Portfolio]
卷期号:16 (6): 725-733 被引量:118
标识
DOI:10.1038/s41565-021-00870-y
摘要

Nanoformulations of therapeutic drugs are transforming our ability to effectively deliver and treat a myriad of conditions. Often, however, they are complex to produce and exhibit low drug loading, except for nanoparticles formed via co-assembly of drugs and small molecular dyes, which display drug-loading capacities of up to 95%. There is currently no understanding of which of the millions of small-molecule combinations can result in the formation of these nanoparticles. Here we report the integration of machine learning with high-throughput experimentation to enable the rapid and large-scale identification of such nanoformulations. We identified 100 self-assembling drug nanoparticles from 2.1 million pairings, each including one of 788 candidate drugs and one of 2,686 approved excipients. We further characterized two nanoparticles, sorafenib–glycyrrhizin and terbinafine–taurocholic acid both ex vivo and in vivo. We anticipate that our platform can accelerate the development of safer and more efficacious nanoformulations with high drug-loading capacities for a wide range of therapeutics. Self-assembly of small drugs with organic dyes represents a facile route to synthesize nanoparticles with high drug-loading capability. Here the authors combine a machine learning approach with high-throughput experimental validation to identify which combinations of drugs and excipient lead to successful nanoparticle formation and characterize the therapeutic efficacy of two of them in vitro and in animal models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lance蓝谶完成签到,获得积分10
1秒前
zhaoying完成签到,获得积分10
1秒前
1秒前
ShengQ完成签到,获得积分10
2秒前
thwj完成签到,获得积分10
2秒前
顾矜应助Avery采纳,获得30
3秒前
乐观无心应助Benhnhk21采纳,获得10
3秒前
Lorain完成签到,获得积分20
3秒前
高贵的思天完成签到,获得积分10
4秒前
fangang发布了新的文献求助20
4秒前
小华乂跤417完成签到,获得积分10
5秒前
开心浩阑发布了新的文献求助10
6秒前
Lorain发布了新的文献求助10
6秒前
呆萌的鼠标完成签到 ,获得积分0
7秒前
ironsilica完成签到,获得积分10
7秒前
大七完成签到 ,获得积分10
7秒前
火星上飞丹完成签到,获得积分10
7秒前
seedcode完成签到,获得积分10
8秒前
万能图书馆应助Lance蓝谶采纳,获得10
8秒前
开朗的慕儿完成签到,获得积分10
8秒前
贪玩的元彤完成签到,获得积分10
9秒前
wendinfgmei完成签到,获得积分10
9秒前
薛强发布了新的文献求助10
9秒前
9秒前
zgx完成签到,获得积分10
9秒前
小二郎应助活力初蝶采纳,获得10
10秒前
慕青应助HM采纳,获得10
10秒前
隐形曼青应助Dylan采纳,获得10
11秒前
nicheng完成签到 ,获得积分0
11秒前
香蕉觅云应助火星上飞丹采纳,获得10
12秒前
fangang完成签到,获得积分10
12秒前
FashionBoy应助sdfwsdfsd采纳,获得30
13秒前
13秒前
13秒前
咕_完成签到 ,获得积分10
14秒前
14秒前
盛宇大天才完成签到,获得积分10
15秒前
啊喔额发布了新的文献求助10
15秒前
上官若男应助暮歌采纳,获得10
15秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953555
求助须知:如何正确求助?哪些是违规求助? 3499137
关于积分的说明 11094114
捐赠科研通 3229679
什么是DOI,文献DOI怎么找? 1785728
邀请新用户注册赠送积分活动 869490
科研通“疑难数据库(出版商)”最低求助积分说明 801478