Prediction efficacy of feature classification of solitary pulmonary nodules based on CT radiomics

医学 无线电技术 接收机工作特性 预测值 结核(地质) 放射科 曲线下面积 病态的 试验预测值 肺孤立结节 计算机断层摄影术 病理 内科学 生物 古生物学
作者
Qingqing Xu,Wenli Shan,Yan Zhu,Chencui Huang,Si-yu Bao,Lili Guo
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:139: 109667-109667 被引量:11
标识
DOI:10.1016/j.ejrad.2021.109667
摘要

Objective To investigate the relationship between CT radiomic features, pathological classification of pulmonary nodules, and evaluate the prediction effect of different stratified progressive radiomic models on the pathological classification of pulmonary nodules. Methods Altogether, 189 patients pathologically confirmed with pulmonary nodules from July 2017 to August 2019 who had complete data were enrolled, including 71 patients with benign nodules, 51 with malignant non-invasive nodules, and 67 with invasive nodules. Three CT radiomic models were established respectively. Model 1 classified benign and malignant nodules (including malignant non-invasive and invasive nodules). Model 2 classified malignant non-invasive and invasive nodules. Model 3 classified benign, malignant non-invasive, and invasive nodules. High-throughput feature collection was carried out for all delineated regions of interest (ROIs), and the best models were established by screening features and classifiers using intelligent methods. ROC curves and areas under the curve (AUCs) were used to evaluate the prediction efficacy of the models by calculating the sensitivity, specificity, accuracies, positive predictive values, and negative predictive values. Results Through Models 1, 2, and 3, we screened out 20, 2, and 20 radiomic features, respectively, and plotted the ROC curves. In the test group, the AUC values were 0.85, 0.89, and 0.84, respectively; the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were 79.66 %, 70.42 %, 84.59 %, and 81.74 % and 67.57% for Model 1, 88.06 %, 74.51 %, 82.2 %, 81.94 %, and 82.61 % for Model 2, and 71.34 %, 85.05 %, 70.37 %, 83.2 %, and 76.3 % for Model 3. Conclusion The radiomic feature models based on CT images could well reflect the differences between benign nodules, malignant non-invasive nodules, and invasive nodules, and assist in their classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娜行发布了新的文献求助10
刚刚
大雄完成签到,获得积分10
刚刚
kai发布了新的文献求助10
1秒前
科研通AI5应助老西瓜采纳,获得10
1秒前
核弹完成签到 ,获得积分10
1秒前
kevin完成签到,获得积分10
2秒前
Chem is try发布了新的文献求助10
2秒前
皖医梁朝伟完成签到 ,获得积分10
2秒前
汉堡包应助野性的南蕾采纳,获得10
2秒前
2秒前
便宜小师傅完成签到 ,获得积分10
3秒前
霏冉完成签到,获得积分10
3秒前
4秒前
Grayball应助包容的剑采纳,获得10
4秒前
董小天天完成签到,获得积分10
4秒前
4秒前
华仔应助qym采纳,获得10
4秒前
琅琊为刃完成签到,获得积分10
5秒前
酷波er应助hhh采纳,获得10
5秒前
5秒前
小巧的香氛完成签到 ,获得积分10
6秒前
6秒前
6秒前
zxcv23发布了新的文献求助10
6秒前
没有名称发布了新的文献求助10
6秒前
7秒前
7秒前
zier完成签到 ,获得积分10
8秒前
阡陌完成签到,获得积分10
8秒前
华仔应助毕业就好采纳,获得10
8秒前
liyi发布了新的文献求助10
8秒前
难过小天鹅完成签到,获得积分10
9秒前
非常可爱发布了新的文献求助20
9秒前
eee发布了新的文献求助10
9秒前
幸福胡萝卜完成签到,获得积分10
9秒前
10秒前
科研通AI5应助琅琊为刃采纳,获得10
10秒前
10秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672