Prediction efficacy of feature classification of solitary pulmonary nodules based on CT radiomics

医学 无线电技术 接收机工作特性 预测值 结核(地质) 放射科 曲线下面积 病态的 试验预测值 肺孤立结节 计算机断层摄影术 病理 内科学 生物 古生物学
作者
Qingqing Xu,Wenli Shan,Yan Zhu,Chencui Huang,Si-yu Bao,Lili Guo
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:139: 109667-109667 被引量:11
标识
DOI:10.1016/j.ejrad.2021.109667
摘要

Objective To investigate the relationship between CT radiomic features, pathological classification of pulmonary nodules, and evaluate the prediction effect of different stratified progressive radiomic models on the pathological classification of pulmonary nodules. Methods Altogether, 189 patients pathologically confirmed with pulmonary nodules from July 2017 to August 2019 who had complete data were enrolled, including 71 patients with benign nodules, 51 with malignant non-invasive nodules, and 67 with invasive nodules. Three CT radiomic models were established respectively. Model 1 classified benign and malignant nodules (including malignant non-invasive and invasive nodules). Model 2 classified malignant non-invasive and invasive nodules. Model 3 classified benign, malignant non-invasive, and invasive nodules. High-throughput feature collection was carried out for all delineated regions of interest (ROIs), and the best models were established by screening features and classifiers using intelligent methods. ROC curves and areas under the curve (AUCs) were used to evaluate the prediction efficacy of the models by calculating the sensitivity, specificity, accuracies, positive predictive values, and negative predictive values. Results Through Models 1, 2, and 3, we screened out 20, 2, and 20 radiomic features, respectively, and plotted the ROC curves. In the test group, the AUC values were 0.85, 0.89, and 0.84, respectively; the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were 79.66 %, 70.42 %, 84.59 %, and 81.74 % and 67.57% for Model 1, 88.06 %, 74.51 %, 82.2 %, 81.94 %, and 82.61 % for Model 2, and 71.34 %, 85.05 %, 70.37 %, 83.2 %, and 76.3 % for Model 3. Conclusion The radiomic feature models based on CT images could well reflect the differences between benign nodules, malignant non-invasive nodules, and invasive nodules, and assist in their classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sssssssssss发布了新的文献求助10
刚刚
飘零枫叶发布了新的文献求助10
刚刚
852应助lantZa采纳,获得10
1秒前
顾北完成签到,获得积分10
1秒前
hearts_j关注了科研通微信公众号
1秒前
2秒前
2秒前
科研助手6应助科研通管家采纳,获得10
3秒前
今后应助独特的兰采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
怎么说应助科研通管家采纳,获得10
3秒前
能干的诗筠完成签到 ,获得积分10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
3秒前
满意忻发布了新的文献求助20
3秒前
搜集达人应助科研通管家采纳,获得10
4秒前
能干如音关注了科研通微信公众号
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
wu8577应助科研通管家采纳,获得10
4秒前
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
怕孤独的乌龟完成签到,获得积分10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得30
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
灿灿应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
kalcspin完成签到,获得积分10
5秒前
6秒前
bobecust完成签到,获得积分10
6秒前
YY19891219发布了新的文献求助10
7秒前
7秒前
符聪发布了新的文献求助10
7秒前
7秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961767
求助须知:如何正确求助?哪些是违规求助? 3508099
关于积分的说明 11139632
捐赠科研通 3240798
什么是DOI,文献DOI怎么找? 1791052
邀请新用户注册赠送积分活动 872720
科研通“疑难数据库(出版商)”最低求助积分说明 803344