清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An interactive filter-wrapper multi-objective evolutionary algorithm for feature selection

初始化 计算机科学 滤波器(信号处理) 人口 特征选择 进化算法 特征(语言学) 选择(遗传算法) 人工智能 数据挖掘 机器学习 算法 语言学 哲学 人口学 社会学 计算机视觉 程序设计语言
作者
Zhengyi Liu,Bo Chang,Fan Cheng
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:65: 100925-100925 被引量:26
标识
DOI:10.1016/j.swevo.2021.100925
摘要

As an important task in data mining, feature selection can improve the performance of classification by eliminating the redundant or irrelevant features in original data. It is mainly divided into filter method and wrapper method, and each one has its own advantages. To make full use of the advantages of two methods, in this paper, an interactive filter-wrapper multi-objective evolutionary algorithm, named GR-MOEA is proposed, where guiding and repairing strategies are used to select feature subsets with high quality. To be specific, a wrapper population and a filter population are evolved simultaneously in the proposed algorithm. To utilize the merits of two populations, an interactive scheme is designed, which includes a wrapper to filter guiding strategy and a filter to wrapper repairing strategy. The guide strategy is to use the good solutions in the wrapper population to steer the filter population towards a better direction. While in the repairing strategy, some features in the wrapper population are repaired by the useful information in filter population, which can avoid the trapping of local optimum in wrapper population. To further enhance the performance of GR-MOEA, two effective initialization strategies are also developed. Empirical studies are conducted by comparing the proposed algorithm with several state-of-the-art on different datasets, and the experimental results demonstrate the superiority of GR-MOEA over the comparison methods in obtaining the feature subsets with higher qualities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
顾矜应助liu采纳,获得10
3秒前
lwtsy发布了新的文献求助10
6秒前
8秒前
量子星尘发布了新的文献求助10
12秒前
CodeCraft应助George采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
脑洞疼应助科研通管家采纳,获得10
34秒前
逸风望完成签到,获得积分10
35秒前
合不着完成签到 ,获得积分10
40秒前
lwtsy完成签到,获得积分10
44秒前
54秒前
George发布了新的文献求助10
58秒前
llll完成签到 ,获得积分0
58秒前
无花果应助Developing_human采纳,获得10
1分钟前
1分钟前
笔墨纸砚完成签到 ,获得积分10
1分钟前
1分钟前
汉堡包应助酷酷的大米采纳,获得10
1分钟前
酷酷的大米完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
sweet完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得20
2分钟前
和谐的夏岚完成签到 ,获得积分10
3分钟前
Paris完成签到 ,获得积分10
3分钟前
凤迎雪飘完成签到,获得积分10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
天天快乐应助Developing_human采纳,获得10
4分钟前
5分钟前
liu发布了新的文献求助10
5分钟前
郭强完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664563
求助须知:如何正确求助?哪些是违规求助? 4865032
关于积分的说明 15108031
捐赠科研通 4823202
什么是DOI,文献DOI怎么找? 2582042
邀请新用户注册赠送积分活动 1536153
关于科研通互助平台的介绍 1494545