STDFusionNet: An Infrared and Visible Image Fusion Network Based on Salient Target Detection

突出 保险丝(电气) 图像融合 计算机视觉 模式识别(心理学) 人工智能 特征提取 计算机科学 特征(语言学) 融合 图像(数学) 红外线的 光学 物理 工程类 哲学 语言学 电气工程
作者
Jiayi Ma,Linfeng Tang,Meilong Xu,Hao Zhang,Guobao Xiao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-13 被引量:286
标识
DOI:10.1109/tim.2021.3075747
摘要

In this article, we propose an infrared and visible image fusion network based on the salient target detection, termed STDFusionNet, which can preserve the thermal targets in infrared images and the texture structures in visible images. First, a salient target mask is dedicated to annotating regions of the infrared image that humans or machines pay more attention to, so as to provide spatial guidance for the integration of different information. Second, we combine this salient target mask to design a specific loss function to guide the extraction and reconstruction of features. Specifically, the feature extraction network can selectively extract salient target features from infrared images and background texture features from visible images, while the feature reconstruction network can effectively fuse these features and reconstruct the desired results. It is worth noting that the salient target mask is only required in the training phase, which enables the proposed STDFusionNet to be an end-to-end model. In other words, our STDFusionNet can fulfill salient target detection and key information fusion in an implicit manner. Extensive qualitative and quantitative experiments demonstrate the superiority of our fusion algorithm over the current state of the arts, where our algorithm is much faster and the fusion results look like high-quality visible images with clear highlighted infrared targets. Moreover, the experimental results on the public datasets reveal that our algorithm can improve the entropy (EN), mutual information (MI), visual information fidelity (VIF), and spatial frequency (SF) metrics with about 1.25%, 22.65%, 4.3%, and 0.89% gains, respectively. Our code is publicly available at https://github.com/jiayi-ma/STDFusionNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助Manta采纳,获得10
1秒前
亓大大完成签到,获得积分10
2秒前
4秒前
勤奋的凌香完成签到,获得积分10
4秒前
11点40发布了新的文献求助10
5秒前
从容的鹰发布了新的文献求助10
5秒前
5秒前
9秒前
pxy发布了新的文献求助30
9秒前
小趴蔡完成签到 ,获得积分10
9秒前
xu发布了新的文献求助10
10秒前
FashionBoy应助乔乔乔采纳,获得10
10秒前
11秒前
11秒前
13秒前
烟花应助呼安采纳,获得10
14秒前
矢思然完成签到,获得积分10
15秒前
xxggyy007发布了新的文献求助30
15秒前
16秒前
烟花应助从容的鹰采纳,获得10
18秒前
18秒前
易达发布了新的文献求助10
19秒前
FashionBoy应助lzd采纳,获得10
19秒前
FashionBoy应助xu采纳,获得10
19秒前
Hang完成签到,获得积分10
21秒前
张生娣发布了新的文献求助10
22秒前
SciGPT应助科研通管家采纳,获得10
22秒前
无花果应助科研通管家采纳,获得10
22秒前
CodeCraft应助科研通管家采纳,获得10
22秒前
大个应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
23秒前
汉堡包应助科研通管家采纳,获得10
23秒前
科研助手6应助科研通管家采纳,获得10
23秒前
孙福禄应助科研通管家采纳,获得10
23秒前
whatever应助科研通管家采纳,获得10
23秒前
慕青应助科研通管家采纳,获得10
23秒前
yar应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998449
求助须知:如何正确求助?哪些是违规求助? 3537924
关于积分的说明 11272900
捐赠科研通 3276966
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883819
科研通“疑难数据库(出版商)”最低求助积分说明 810020