Identification of Baha'sib mung beans based on Fourier transform near infrared spectroscopy and partial least squares

偏最小二乘回归 追踪 线性判别分析 绿豆 数学 数据预处理 规范化(社会学) 预处理器 统计 模式识别(心理学) 人工智能 化学 计算机科学 食品科学 社会学 人类学 操作系统
作者
Lili Qian,Dianwei Li,Xuejian Song,Feng Zuo,Dongjie Zhang
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:105: 104203-104203 被引量:11
标识
DOI:10.1016/j.jfca.2021.104203
摘要

In the study, Fourier transform near infrared spectroscopy technology (FT-NIR) was adopted to protect a geographically iconic product, Baha Siber mung bean. Based on partial least squares analysis method, the origin-variety dual tracing model was firstly established. Then, the data of Baha Siber mung beans from four counties (Durbert Mongolian Autonomous County (Dumeng County for short) and Baicheng, Tailai and Chifeng) were processed with different preprocessing methods to establish the origin tracing model for the analysis and comparison. Among different preprocessing methods, the vector normalization preprocessing method yielded the higher precision of corresponding model (R2 =98.02). A variety identification model was established for five varieties: mung bean, Xiaoyinggelu, Dayinggelu, Lufeng 2 and Chilu 3 from Dumeng. The preprocessing method based on multivariate scattering correction yielded the higher precision (R2 = 96.83). According to the partial least squares method-discriminant analysis results (PLS-DA), the correct recognition rate of Dumeng mung beans obtained with the origin tracing model was 92.31 %; the correct recognition rate of Xiaoming mung beans obtained with the variety identification model was 90.00 %; the correct recognition rate of Baha'sib mung obtained with the origin-variety dual tracing model was 96.67 %. Therefore, the origin-variety dual tracing model based on FT-NIR and PLS improved the correct recognition rate of Bahaxibo mung beans. This method provides a new brand protection way for geographical indication products of mung bean.It also provides a new strategy for the identification of other high value-added agricultural products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shufei发布了新的文献求助10
2秒前
和谐又菡发布了新的文献求助10
2秒前
大模型应助时梦冉采纳,获得10
2秒前
2秒前
3秒前
3秒前
4秒前
Allen发布了新的文献求助10
4秒前
5秒前
5秒前
大湖玩家发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
yalin完成签到,获得积分10
5秒前
kentonchow应助gcaty采纳,获得10
5秒前
公卫小白发布了新的文献求助10
6秒前
6秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
今后应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
tuanheqi应助科研通管家采纳,获得150
8秒前
英姑应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得30
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
华仔应助hulu采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
zihongli发布了新的文献求助10
8秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355566
求助须知:如何正确求助?哪些是违规求助? 4487492
关于积分的说明 13970307
捐赠科研通 4388192
什么是DOI,文献DOI怎么找? 2410927
邀请新用户注册赠送积分活动 1403459
关于科研通互助平台的介绍 1376974