Identification of Baha'sib mung beans based on Fourier transform near infrared spectroscopy and partial least squares

偏最小二乘回归 追踪 线性判别分析 绿豆 数学 数据预处理 规范化(社会学) 预处理器 统计 模式识别(心理学) 人工智能 化学 计算机科学 食品科学 社会学 人类学 操作系统
作者
Lili Qian,Dianwei Li,Xuejian Song,Feng Zuo,Dongjie Zhang
出处
期刊:Journal of Food Composition and Analysis [Elsevier BV]
卷期号:105: 104203-104203 被引量:11
标识
DOI:10.1016/j.jfca.2021.104203
摘要

In the study, Fourier transform near infrared spectroscopy technology (FT-NIR) was adopted to protect a geographically iconic product, Baha Siber mung bean. Based on partial least squares analysis method, the origin-variety dual tracing model was firstly established. Then, the data of Baha Siber mung beans from four counties (Durbert Mongolian Autonomous County (Dumeng County for short) and Baicheng, Tailai and Chifeng) were processed with different preprocessing methods to establish the origin tracing model for the analysis and comparison. Among different preprocessing methods, the vector normalization preprocessing method yielded the higher precision of corresponding model (R2 =98.02). A variety identification model was established for five varieties: mung bean, Xiaoyinggelu, Dayinggelu, Lufeng 2 and Chilu 3 from Dumeng. The preprocessing method based on multivariate scattering correction yielded the higher precision (R2 = 96.83). According to the partial least squares method-discriminant analysis results (PLS-DA), the correct recognition rate of Dumeng mung beans obtained with the origin tracing model was 92.31 %; the correct recognition rate of Xiaoming mung beans obtained with the variety identification model was 90.00 %; the correct recognition rate of Baha'sib mung obtained with the origin-variety dual tracing model was 96.67 %. Therefore, the origin-variety dual tracing model based on FT-NIR and PLS improved the correct recognition rate of Bahaxibo mung beans. This method provides a new brand protection way for geographical indication products of mung bean.It also provides a new strategy for the identification of other high value-added agricultural products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活泼凡阳发布了新的文献求助10
刚刚
NexusExplorer应助皮崇知采纳,获得10
刚刚
洋洋完成签到,获得积分20
刚刚
丘比特应助方班术采纳,获得10
1秒前
1秒前
1秒前
2秒前
Steve完成签到,获得积分20
2秒前
3秒前
5秒前
chaobada完成签到,获得积分10
6秒前
6秒前
洋洋发布了新的文献求助10
7秒前
夏墨发布了新的文献求助30
7秒前
李健的小迷弟应助xx采纳,获得10
7秒前
小熊完成签到,获得积分10
8秒前
高兴荔枝发布了新的文献求助10
8秒前
清欢完成签到,获得积分10
9秒前
皮崇知发布了新的文献求助10
11秒前
慕青应助小星星采纳,获得50
15秒前
16秒前
eric888应助科研通管家采纳,获得100
16秒前
yydragen应助科研通管家采纳,获得80
16秒前
SciGPT应助科研通管家采纳,获得30
17秒前
所所应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得30
17秒前
852应助科研通管家采纳,获得10
17秒前
64658应助科研通管家采纳,获得10
17秒前
iNk应助科研通管家采纳,获得20
17秒前
64658应助科研通管家采纳,获得10
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
64658应助科研通管家采纳,获得10
17秒前
64658应助科研通管家采纳,获得10
18秒前
无花果应助科研通管家采纳,获得10
18秒前
64658应助科研通管家采纳,获得10
18秒前
情怀应助科研通管家采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967367
求助须知:如何正确求助?哪些是违规求助? 3512602
关于积分的说明 11164375
捐赠科研通 3247533
什么是DOI,文献DOI怎么找? 1793886
邀请新用户注册赠送积分活动 874741
科研通“疑难数据库(出版商)”最低求助积分说明 804498