Identification of Baha'sib mung beans based on Fourier transform near infrared spectroscopy and partial least squares

偏最小二乘回归 追踪 线性判别分析 绿豆 数学 数据预处理 规范化(社会学) 预处理器 统计 模式识别(心理学) 人工智能 化学 计算机科学 食品科学 操作系统 社会学 人类学
作者
Lili Qian,Dianwei Li,Xuejian Song,Feng Zuo,Dongjie Zhang
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:105: 104203-104203 被引量:11
标识
DOI:10.1016/j.jfca.2021.104203
摘要

In the study, Fourier transform near infrared spectroscopy technology (FT-NIR) was adopted to protect a geographically iconic product, Baha Siber mung bean. Based on partial least squares analysis method, the origin-variety dual tracing model was firstly established. Then, the data of Baha Siber mung beans from four counties (Durbert Mongolian Autonomous County (Dumeng County for short) and Baicheng, Tailai and Chifeng) were processed with different preprocessing methods to establish the origin tracing model for the analysis and comparison. Among different preprocessing methods, the vector normalization preprocessing method yielded the higher precision of corresponding model (R2 =98.02). A variety identification model was established for five varieties: mung bean, Xiaoyinggelu, Dayinggelu, Lufeng 2 and Chilu 3 from Dumeng. The preprocessing method based on multivariate scattering correction yielded the higher precision (R2 = 96.83). According to the partial least squares method-discriminant analysis results (PLS-DA), the correct recognition rate of Dumeng mung beans obtained with the origin tracing model was 92.31 %; the correct recognition rate of Xiaoming mung beans obtained with the variety identification model was 90.00 %; the correct recognition rate of Baha'sib mung obtained with the origin-variety dual tracing model was 96.67 %. Therefore, the origin-variety dual tracing model based on FT-NIR and PLS improved the correct recognition rate of Bahaxibo mung beans. This method provides a new brand protection way for geographical indication products of mung bean.It also provides a new strategy for the identification of other high value-added agricultural products.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CCX发布了新的文献求助10
1秒前
超级天川完成签到,获得积分10
2秒前
DUWEI发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
w白发布了新的文献求助10
4秒前
6秒前
张大帅6666完成签到,获得积分10
6秒前
张大诚完成签到,获得积分10
6秒前
牛市棋手完成签到,获得积分10
7秒前
解语花发布了新的文献求助10
8秒前
sweetsbt发布了新的文献求助10
8秒前
英姑应助森鹿采纳,获得30
8秒前
xz完成签到 ,获得积分10
8秒前
小马甲应助Chester采纳,获得10
9秒前
芭蕾恰恰舞完成签到,获得积分10
9秒前
汉天完成签到,获得积分10
9秒前
七月发布了新的文献求助10
10秒前
蜜桃小丸子完成签到 ,获得积分10
10秒前
wuming完成签到,获得积分10
10秒前
...完成签到,获得积分10
10秒前
13秒前
13秒前
dxxcshin完成签到,获得积分10
13秒前
15秒前
深情映萱关注了科研通微信公众号
15秒前
完美世界应助司佳雨采纳,获得10
16秒前
科研通AI6应助颜朗采纳,获得10
17秒前
科研通AI6应助七月采纳,获得10
17秒前
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
Young应助科研通管家采纳,获得10
18秒前
852应助科研通管家采纳,获得10
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
寻道图强应助科研通管家采纳,获得30
18秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586355
求助须知:如何正确求助?哪些是违规求助? 4669622
关于积分的说明 14779253
捐赠科研通 4619608
什么是DOI,文献DOI怎么找? 2530838
邀请新用户注册赠送积分活动 1499668
关于科研通互助平台的介绍 1467830