Identification of Baha'sib mung beans based on Fourier transform near infrared spectroscopy and partial least squares

偏最小二乘回归 追踪 线性判别分析 绿豆 数学 数据预处理 规范化(社会学) 预处理器 统计 模式识别(心理学) 人工智能 化学 计算机科学 食品科学 社会学 人类学 操作系统
作者
Lili Qian,Dianwei Li,Xuejian Song,Feng Zuo,Dongjie Zhang
出处
期刊:Journal of Food Composition and Analysis [Elsevier BV]
卷期号:105: 104203-104203 被引量:11
标识
DOI:10.1016/j.jfca.2021.104203
摘要

In the study, Fourier transform near infrared spectroscopy technology (FT-NIR) was adopted to protect a geographically iconic product, Baha Siber mung bean. Based on partial least squares analysis method, the origin-variety dual tracing model was firstly established. Then, the data of Baha Siber mung beans from four counties (Durbert Mongolian Autonomous County (Dumeng County for short) and Baicheng, Tailai and Chifeng) were processed with different preprocessing methods to establish the origin tracing model for the analysis and comparison. Among different preprocessing methods, the vector normalization preprocessing method yielded the higher precision of corresponding model (R2 =98.02). A variety identification model was established for five varieties: mung bean, Xiaoyinggelu, Dayinggelu, Lufeng 2 and Chilu 3 from Dumeng. The preprocessing method based on multivariate scattering correction yielded the higher precision (R2 = 96.83). According to the partial least squares method-discriminant analysis results (PLS-DA), the correct recognition rate of Dumeng mung beans obtained with the origin tracing model was 92.31 %; the correct recognition rate of Xiaoming mung beans obtained with the variety identification model was 90.00 %; the correct recognition rate of Baha'sib mung obtained with the origin-variety dual tracing model was 96.67 %. Therefore, the origin-variety dual tracing model based on FT-NIR and PLS improved the correct recognition rate of Bahaxibo mung beans. This method provides a new brand protection way for geographical indication products of mung bean.It also provides a new strategy for the identification of other high value-added agricultural products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CAT完成签到,获得积分10
1秒前
111111发布了新的文献求助20
1秒前
顶呱呱完成签到 ,获得积分10
4秒前
JamesPei应助小孙采纳,获得10
4秒前
希望天下0贩的0应助hoshi采纳,获得10
4秒前
missme应助呼啦啦采纳,获得10
4秒前
4秒前
Fe_001完成签到 ,获得积分10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
8R60d8应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
defef发布了新的文献求助10
9秒前
茄丁捞面完成签到,获得积分10
9秒前
9秒前
要钱的许愿池完成签到,获得积分10
9秒前
yanganqi完成签到,获得积分10
11秒前
文正熊发布了新的文献求助10
12秒前
12秒前
iwsaml发布了新的文献求助10
15秒前
研友_LpQGjn完成签到 ,获得积分10
15秒前
15秒前
山楂糕关注了科研通微信公众号
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4537519
求助须知:如何正确求助?哪些是违规求助? 3972505
关于积分的说明 12306111
捐赠科研通 3639199
什么是DOI,文献DOI怎么找? 2003739
邀请新用户注册赠送积分活动 1039068
科研通“疑难数据库(出版商)”最低求助积分说明 928520