Optimal recovery model in a used batteries closed-loop supply chain considering uncertain residual capacity

残余物 供应链 循环(图论) 业务 计算机科学 控制理论(社会学) 链条(单位) 闭环 数学 控制(管理) 工程类 物理 控制工程 营销 人工智能 天文 组合数学 算法
作者
Changyi Liu,Hui Wang,Juan Tang,Ching‐Ter Chang,Zhi Liu
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:156: 102516-102516 被引量:64
标识
DOI:10.1016/j.tre.2021.102516
摘要

• We examine the impact of uncertain residual capacity of used batteries on the CLSC. • We investigate the collection and remanufacturing strategies of used batteries. • The two base recovery models of used batteries are formulated. • We extend the models to a manufacturer-dominated CLSC and a competitive CLSC. The collection and echelon utilization of used batteries (UBs) retired from energy vehicles (EVs) has received great attention in theory and practice. However, there has been no clear formulation of the optimal recovery model or assessment of how the uncertain residual capacity of UBs affects collection and remanufacturing strategies. This study characterizes the uncertain residual capacity based on the battery capacity level required for remanufacturing, and first formulates two base models of supplier recovery and manufacturer recovery in a supplier-dominated closed-loop supply chain (CLSC). Our results show that the impact of uncertain residual capacity on the operational decisions and economic performance of the CLSC is related to the recovery model, remanufacturing strategy, maximal unit remanufacturing cost of UBs, and the substitution degree of low-speed EVs for regular EVs. Compared with the supplier-recovery model, the manufacturer-recovery model brings a higher profit to the EV manufacturer and CLSC when no or partial UBs are remanufactured, but a lower profit for the battery supplier, and places a greater burden on the environment. Furthermore, we extend the base models to the manufacturer-dominated CLSC and a CLSC with two competing suppliers to investigate the rationality of the above results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助哈哈哈采纳,获得10
刚刚
迅速的代桃完成签到,获得积分10
刚刚
无极微光应助哈哈哈采纳,获得20
刚刚
Evelyn_ding完成签到,获得积分10
刚刚
chruse发布了新的文献求助10
刚刚
1秒前
JiangSir完成签到,获得积分10
1秒前
阿龙发布了新的文献求助10
1秒前
Aiden完成签到,获得积分10
1秒前
Xiaosi完成签到,获得积分10
1秒前
san完成签到,获得积分10
1秒前
一只生物狗完成签到,获得积分10
1秒前
piaopiao1122发布了新的文献求助10
2秒前
2秒前
2秒前
善学以致用应助夏儿采纳,获得10
2秒前
FashionBoy应助拿破仑的鱼采纳,获得10
3秒前
3秒前
迷失浪人发布了新的文献求助10
3秒前
liang发布了新的文献求助10
5秒前
唐新惠完成签到 ,获得积分10
5秒前
5秒前
xiaofu完成签到,获得积分20
5秒前
XQJ完成签到,获得积分10
5秒前
和谐的敏完成签到,获得积分10
5秒前
wuludie应助天真紫伊采纳,获得20
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
Cheney完成签到,获得积分10
7秒前
猫小咪发布了新的文献求助10
7秒前
Moriarty完成签到,获得积分10
7秒前
坚强的芸遥完成签到,获得积分10
7秒前
王晓茜完成签到,获得积分20
8秒前
未道发布了新的文献求助10
8秒前
8秒前
完美麦片完成签到,获得积分10
9秒前
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698917
求助须知:如何正确求助?哪些是违规求助? 5127463
关于积分的说明 15223160
捐赠科研通 4853889
什么是DOI,文献DOI怎么找? 2604380
邀请新用户注册赠送积分活动 1555868
关于科研通互助平台的介绍 1514197