CYP2C19型
氯丙咪嗪
药理学
细胞色素P450
化学
药物代谢
新陈代谢
生物
生物化学
药品
作者
Tian Lan,Yaqing Ma,Ya-Min Dang,Chenchen Wang,Ren-ai Xu,Jianping Cai,Guoxin Hu
标识
DOI:10.1177/02698811211050573
摘要
Background: CYP2C19 is an important member of the cytochrome P450 enzyme superfamily. We recently identified 31CYP2C19 alleles in the Han Chinese population; studying the effects of CYP2C19 on drug metabolism can help reduce adverse drug reactions and therapeutic failure. Aim: The aim of this study was to assess the catalytic activities of 31 allelic isoforms and their effects on the metabolism of clomipramine in vitro. Methods: The wild-type and 30 CYP2C19 variants were expressed in insect cells, and each variant was characterized using clomipramine as the substrate. Reactions were performed at 37°C with 5–150 μmol/L substrate for 30 min. By using ultra-high-performance liquid chromatography-mass spectrometry to detect the products, the kinetic parameters Km, Vmax, and intrinsic clearance (Vmax/Km) of N-desmethyl clomipramine were determined. Results: Among the CYP2C19 variants tested, CYP2C19*29, L16F, and T130M showed extremely increased intrinsic clearance of clomipramine, CYP2C19*3C, and N277K showed similar intrinsic clearance (Vmax/Km) values with CYP2C19*1, while the intrinsic clearance values of other variants were significantly decreased (from 0.65% to 63.28%). In addition, CYP2C19*3 and 35FS could not be detected because they have no detectable enzyme activity. Conclusions: As the first report of 31 CYP2C19 alleles for clomipramine metabolism, our study could provide corresponding reference for clomipramine for further studies in vivo and offer valuable information relevant to the personalized medicine for CYP2C19-metabolized drug.
科研通智能强力驱动
Strongly Powered by AbleSci AI